纺织学报 ›› 2021, Vol. 42 ›› Issue (11): 159-165.doi: 10.13475/j.fzxb.20210100107

• 机械与器材 • 上一篇    下一篇

洛伦兹力磁悬浮织针驱动器设计与仿真

刘泽旭1,2, 胥光申1,2, 盛晓超1,2(), 代欣怡1,2   

  1. 1.西安工程大学 机电工程学院, 陕西 西安 710048
    2.西安市现代智能纺织装备重点实验室, 陕西 西安 710048
  • 收稿日期:2021-01-04 修回日期:2021-07-29 出版日期:2021-11-15 发布日期:2021-11-29
  • 通讯作者: 盛晓超
  • 作者简介:刘泽旭(1997—),男,硕士生。主要研究方向为新型纺织机械。
  • 基金资助:
    陕西省教育厅自然科学一般专项科学研究计划项目(20JK0644);西安市科技局重点实验室建设项目(2019220614SYS021CG043)

Design and simulation of Lorentz force actuated maglev knitting needle actuator

LIU Zexu1,2, XU Guangshen1,2, SHENG Xiaochao1,2(), DAI Xinyi1,2   

  1. 1. College of Mechanical and Electrical Engineering, Xi'an Polytechnic University, Xi'an, Shaanxi 710048, China
    2. Xi'an Key Laboratory of Modern Intelligent Textile Equipment, Xi'an, Shaanxi 710048, China
  • Received:2021-01-04 Revised:2021-07-29 Published:2021-11-15 Online:2021-11-29
  • Contact: SHENG Xiaochao

摘要:

为解决织针三角驱动中存在摩擦、冲击等问题,并避免引入电磁力非线性影响,设计了一种基于洛伦兹力的磁悬浮织针驱动器。首先提出了驱动原理并推导了数学模型,利用ANSYS软件进行电磁有限元分析;然后设计了执行调节(PID)控制器并在MatLab/Simulink中进行控制系统仿真,最后搭建了实物平台进行实验。结果表明:驱动器工作区域磁场均匀稳定,电磁力满足驱动要求;织针轨迹与预期吻合,仿真误差在±3.5 μm之间;织针可以达到集圈高度,且响应迅速、平稳无振荡,测试误差在±10 μm之间。洛伦兹力磁悬浮织针驱动器可以消除织针运动中摩擦、振动和冲击,并且与磁阻力磁悬浮织针驱动器相比控制系统简单、线性度好,控制精度可达到微米级。

关键词: 织针驱动, 磁悬浮, 洛伦兹力, 纺织机械, 磁场有限元

Abstract:

In order to solve the problems of friction, impact in triangle knitting needle drive, and avoid the nonlinear influence of electromagnetic force, this paper presents a maglev knitting needle actuator based on Lorentz force. Firstly, the driving principle and mathematical model were proposed, and the electromagnetic finite element analysis is carried out with ANSYS; Secondly, the PID controller is designed, and the system control model is built and simulated in MatLab/Simulink; Finally, the physical platform is built for experimental verification. Magnetic field simulation shows that the magnetic field in the working area of the model is uniform and stable, and the electromagnetic force meets the driving requirements. The control system simulation results show that the needle trajectory is consistent with the expected trajectory, and the simulation error is within ±3.5 μm. The experimental results of the physical platform show that the needle can reach the height of tuck, with rapid, stable and no oscillation, and the experimental error is within ±10 μm. Lorentz force actuated maglev knitting needle actuator can eliminate the friction, vibration and impact in the needle movement. Compared with reluctance force actuated knitting needle actuator, the control system is simple, linear and the control precision can reach micron level.

Key words: knitting needle driving, maglev, Lorentz force, textile machinery, magnetic field finite element method

中图分类号: 

  • TS183

图1

洛伦兹力磁悬浮织针驱动器原理"

图2

洛伦兹力磁悬浮织针驱动器结构示意图"

图3

模型受力分析图"

图4

磁场有限元网格划分"

图5

磁场仿真结果"

图6

径向磁感应强度"

图7

磁悬浮织针运动轨迹"

图8

洛伦兹力磁悬浮织针驱动器控制系统框图"

图9

控制系统总体模型"

图10

控制系统仿真响应"

图11

洛伦兹力磁悬浮织针驱动器样机"

图12

实物实验结果"

[1] PORATH M D C, BORTONI L A F, SIMONI R, et al. Offline and online strategies to improve pose accuracy of a Stewart platform using indoor-GPS[J]. Precision Engineering, 2020, 63:83-93.
doi: 10.1016/j.precisioneng.2020.01.003
[2] QIAN Junbing, CHEN Xuedong, CHEN Han, et al. Magnetic field analysis of Lorentz motors using a novel segmented magnetic equivalent circuit method[J]. Sensors, 2013, 13:1664-1678.
doi: 10.3390/s130201664 pmid: 23358368
[3] 张森林, 沈国炎. 直线电机在电子提花机中的应用[J]. 纺织学报, 2008, 29(11):119-123.
ZHANG Senlin, SHEN Guoyan. Application of linear motors in electronic jacquard[J]. Journal of Textile Research, 2008, 29(11):119-123.
doi: 10.1177/004051755902900202
[4] 范良志. 电织针永磁阵列内的静磁场分布及结构刚度分析[J]. 电机与控制学报, 2013, 17(3):84-91.
FAN Liangzhi. Static magnetic field and structure rigidity analysis for permanent magnet matrix in electric knitting needle[J]. Electric Machines and Control, 2013, 17(3):84-91.
[5] 汪诚诚. 电织针超薄直线电机阵列单元的结构优化设计[D]. 武汉: 武汉纺织大学, 2014:7-15.
WANG Chengcheng. Structure optimization design of electric needle thin linear motor of an array element[D]. Wuhan: Wuhan Textile University, 2014:7-15.
[6] 刘凯, 张团善, 胥光申, 等. 基于U型直线电机的袜机织针系统的参数选择[J]. 纺织报告, 2018(1):58-60.
LIU Kai, ZHANG Tuanshan, XU Guangshen, et al. Structural design of needle-picking system based on U-type linear motor[J]. Textile Reports, 2018(1):58-60.
[7] 吴晓光, 孔令学, 朱里, 等. 磁悬浮式针织提花驱动方式理论研究与探讨[J]. 纺织学报, 2012, 33(10):128-133.
WU Xiaoguang, KONG Lingxue, ZHU Li, et al. Theoretical research on propulsion mode of magnetic suspension needles for jacquard knitting[J]. Journal of Textile Research, 2012, 33(10):128-133.
[8] 吴晓光, 张弛, 朱里, 等. 磁悬浮式驱动织针的关键技术与试验模型[J]. 纺织学报, 2014, 35(10):129-135.
WU Xiaoguang, ZHANG Chi, ZHU Li, et al. Key technologies of magnetic suspension driving knitting needles and experiment model[J]. Journal of Textile Research, 2014, 35(10):129-135.
doi: 10.1177/004051756503500206
[9] 李冬冬, 张成俊, 左小艳, 等. 混合磁悬浮织针驱动的永磁织针磁场分布规律[J]. 纺织学报, 2020, 41(9):136-142.
LI Dongdong, ZHANG Chengjun, ZUO Xiaoyan, et al. Study on magnetic field distribution in permanent magnetic needle drive using hybrid magnetic suspension needle[J]. Journal of Textile Research, 2020, 41(9):136-142.
[10] 万道玉, 吴晓光, 张弛, 等. 磁悬浮式驱动织针电磁力研究及线圈轮廓优化[J]. 针织工业, 2017(8):9-12.
WAN Daoyu, WU Xiaoguang, ZHANG Chi, et al. Electromagnetic force study of magnetic suspension driving knitting needle and coil profile optimization[J]. Knitting Industries, 2017(8):9-12.
[11] 游良风. 磁悬浮织针大行程驱动研究[D]. 武汉: 武汉纺织大学, 2020:7-21.
YOU Liangfeng. Study on the large stroke driving of Maglev knitting needle[D]. Wuhan: Wuhan Textile University, 2020:7-21.
[12] KURNYTA-MAZUREK P, KURNYTA A, HENZEL M. Measurement system of a magnetic suspension system for a jet engine rotor[J]. Sensors, 2020, 20(3):862.
doi: 10.3390/s20030862
[13] DING Sansan, SUN Jinji, HAN Weitao, et al. Modeling and analysis of a novel guidance magnet for high speed maglev train[J]. IEEE Access, 2019, 7:133324-133334.
doi: 10.1109/ACCESS.2019.2940728
[14] 刘洋, 吴晓光, 张弛, 等. 磁悬浮式驱动织针弯纱张力的动态分析及研究[J]. 针织工业, 2016(4):23-26.
LIU Yang, WU Xiaoguang, ZHANG Chi, et al. Dynamic analysis and research on knitting tension in the knitting process of magnetic levitated driven needle[J]. Knitting Industries, 2016(4):23-26.
[15] 朱里, 吴晓光, 孙盼, 等. 悬浮式驱动织针系统的高效编织模式研究[J]. 针织工业, 2019(7):17-21.
ZHU Li, WU Xiaoguang, SUN Pan, et al. Study of highly efficient knitting mode of suspension driven knitting needle system[J]. Knitting Industries, 2019(7):17-21.
[1] 莫帅, 冯战勇, 党合玉, 邹振兴. 棉纺细纱锭子发展演变与研究展望[J]. 纺织学报, 2020, 41(06): 190-196.
[2] 吴晓光 袁博 雷小龙 张驰 孔令学. 电磁驱动磁悬浮式片梭引纬模式的建立与实验[J]. 纺织学报, 2017, 38(09): 142-148.
[3] 邱海飞. 3D打印技术在织机打纬−开口机构中的应用[J]. 纺织学报, 2017, 38(01): 140-146.
[4] 姜磊. 卷染机自动控制系统的改造设计[J]. 纺织学报, 2015, 36(03): 121-127.
[5] 吴强 马苏扬 廖萍. 磁悬浮拉幅定型传送单元[J]. 纺织学报, 2013, 34(9): 139-0.
[6] 吴晓光 孔令学 朱里 武玉琴 黄振 李爽. 磁悬浮式针织提花驱动方式理论研究与探讨[J]. 纺织学报, 2012, 33(10): 128-133.
[7] 李仁旺;饶楚楚. 面向按订单研制的分类成本模型的研究与应用[J]. 纺织学报, 2011, 32(4): 133-137.
[8] 林子务. 状态维修的设备考核指标与激励机制探讨[J]. 纺织学报, 2003, 24(05): 99-101.
[9] 陈德平;李秀真. 纺织设备中金属旋转体振动的单片机测试系统[J]. 纺织学报, 2000, 21(06): 38-40.
[10] 于海生;潘松峰;吴贺荣. 纺织印染机械电气传动同步控制器的研制[J]. 纺织学报, 1999, 20(04): 53-55.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 赵良臣;闻涛. 旋转组织设计的数学原理[J]. 纺织学报, 2003, 24(06): 33 -34 .
[2] 曹建达;顾小军;殷联甫. 用BP神经网络预测棉织物的手感[J]. 纺织学报, 2003, 24(06): 35 -36 .
[3] 【作者单位】:中国纺织工程学会秘书处【分类号】:+【DOI】:cnki:ISSN:0-.0.00-0-0【正文快照】:  香港桑麻基金会设立的“桑麻纺织科技奖” 0 0 年提名推荐工作;在纺织方面院士;专家和有关单位的大力支持下;收到了 个单位 (人 )推荐的 位候选人的. 2003年桑麻纺织科技奖获奖名单[J]. 纺织学报, 2003, 24(06): 107 .
[4] 【分类号】:Z【DOI】:cnki:ISSN:0-.0.00-0-0【正文快照】:  一;纺 纱模糊控制纺纱张力的研究周光茜等 ( - )………………原棉含杂与除杂效果评价方法的研究于永玲 ( - )……网络长丝纱免浆免捻功能的结构表征方法李栋高等 ( - )……………. 2003年纺织学报第二十四卷总目次[J]. 纺织学报, 2003, 24(06): 109 -620 .
[5] 朱敏;周翔. 准分子激光对聚合物材料的表面改性处理[J]. 纺织学报, 2004, 25(01): 1 -9 .
[6] 黄立新. Optim纤维及产品的开发与应用[J]. 纺织学报, 2004, 25(02): 101 -102 .
[7] 张治国;尹红;陈志荣. 纤维前处理用精练助剂研究进展[J]. 纺织学报, 2004, 25(02): 105 -107 .
[8] 秦元春. 纺织工业发展方向初探[J]. 纺织学报, 2004, 25(02): 108 -110 .
[9] 高伟江;魏文斌. 纺织业发展的战略取向——从比较优势到竞争优势[J]. 纺织学报, 2004, 25(02): 111 -113 .
[10] 姚玉元;陈文兴;张利;潘勇. 催化氧化型消臭蚕丝纤维的研究[J]. 纺织学报, 2004, 25(03): 7 -8 .