纺织学报 ›› 2021, Vol. 42 ›› Issue (05): 1-8.doi: 10.13475/j.fzxb.20210106008
• 特邀论文 • 下一篇
ZHANG Beilei, SHEN Mingwu, SHI Xiangyang()
摘要:
传统静电纺纳米纤维常作为组织工程支架被用于修复缺损部位,往往必须借助外科手术有创植入,极大限制了其在生物医学领域中的应用。为促进静电纺丝技术的开发和应用,综述了静电纺短纤维的制备及其功能化的方法,分类介绍了功能化短纤维在诊断检测、治疗和组织工程这3个方面的生物医学应用;系统分析通过调节工艺参数、后续加工等方式保留静电纺纳米纤维膜的内在功能,以及基于其小尺寸和单分散性,避免纤维膜植入所造成的机体侵入创伤;最后,结合静电纺短纤维当前发展情形分析了其在生物医学领域应用中所面临的挑战和未来的发展前景。
中图分类号:
[1] |
SILL T J, VON RECUM H A. Electrospinning: applications in drug delivery and tissue engineering[J]. Biomaterials, 2008,29(13):1989-2006.
doi: 10.1016/j.biomaterials.2008.01.011 |
[2] |
LI D, XIA Y. Electrospinning of nanofibers: reinventing the wheel?[J]. Adv Mater, 2004,16(14):1151-1170.
doi: 10.1002/(ISSN)1521-4095 |
[3] |
XUE J, WU T, DAI Y, et al. Electrospinning and electrospun nanofibers: methods, materials, and applications[J]. Chem Rev, 2019,119(8):5298-5415.
doi: 10.1021/acs.chemrev.8b00593 |
[4] |
ZHAO J, CUI W. Functional electrospun fibers for local therapy of cancer[J]. Adv Fiber Mater, 2020,2(5):229-245.
doi: 10.1007/s42765-020-00053-9 |
[5] |
HUANG W, XIAO Y, SHI X. Construction of electrospun organic/inorganic hybrid nanofibers for drug delivery and tissue engineering applications[J]. Adv Fiber Mater, 2019,1:32-45.
doi: 10.1007/s42765-019-00007-w |
[6] |
HU J, KAI D, YE H, et al. Electrospinning of poly(glycerol sebacate)-based nanofibers for nerve tissue engineering[J]. Mater Sci Eng C-Mater Biol Appl, 2017,70:1089-1094.
doi: 10.1016/j.msec.2016.03.035 |
[7] |
QIU Q, WU J, QUAN Z, et al. Electrospun nanofibers of polyelectrolyte-surfactant complexes for antibacterial wound dressing application[J]. Soft Matter, 2019,15(48):10020-10028.
doi: 10.1039/C9SM02043H |
[8] |
ZHAO Y L, FAN Z Y, SHEN M W, et al. Hyaluronic acid-Functionalized electrospun polyvinyl alcohol/polyethyleneimine nanofibers for cancer cell capture applications[J]. Adv Mater Interfaces, 2015,2(15):1500256.
doi: 10.1002/admi.201500256 |
[9] |
MA B, XIE J, JIANG J, et al. Rational design of nanofiber scaffolds for orthopedic tissue repair and regeneration[J]. Nanomedicine, 2013,8(9):1459-1481.
doi: 10.2217/nnm.13.132 |
[10] |
ZHANG H, LIU Y, CHEN M, et al. Shape effects of electrospun fiber rods on the tissue distribution and antitumor efficacy[J]. J Controlled Release, 2016,244:52-62.
doi: 10.1016/j.jconrel.2016.05.011 |
[11] |
WENG L, BODA S K, WANG H, et al. Novel 3D hybrid nanofiber aerogels coupled with BMP-2 peptides for cranial bone regeneration[J]. Adv Healthcare Mater, 2018,7(10):1701415.
doi: 10.1002/adhm.v7.10 |
[12] |
WEI J, XIA T, CHEN W, et al. Glucose and lipid metabolism screening models of hepatocyte spheroids after culture with injectable fiber fragments[J]. J Tissue Eng Regen Med, 2020,14(6):774-788.
doi: 10.1002/term.v14.6 |
[13] |
SCHOLTEN E, DHAMANKAR H, BROMBERG L, et al. Electrospray as a tool for drug micro-and nanoparticle patterning[J]. Langmuir, 2011,27(11):6683-6688.
doi: 10.1021/la201065n |
[14] |
FATHONA I W, YABUKI A. A simple one-step fabrication of short polymer nanofibers via electrospinning[J]. J Mater Sci, 2014,49(9):3519-3528.
doi: 10.1007/s10853-014-8065-y |
[15] |
LUO C J, STRIDE E, STOYANOV S, et al. Electrospinning short polymer micro-fibres with average aspect ratios in the range of 10-200[J]. J Polym Res, 2011,18(6):2515-2522.
doi: 10.1007/s10965-011-9667-6 |
[16] |
LI P, XI Y, LI K, et al. Fabrication and properties of electrospun magnetoelectric graphene/Fe3O4/poly(lactic-co-glycolic acid) short nanofibers[J]. J Nanosci Nanotechnol, 2019,19(1):170-175.
doi: 10.1166/jnn.2019.16400 |
[17] |
LI Y, CAO L, YIN X, et al. Semi-interpenetrating polymer network biomimetic structure enables superelastic and thermostable nanofibrous aerogels for cascade filtration of PM2.5[J]. Adv Funct Mater, 2020,30(14):1910426.
doi: 10.1002/adfm.v30.14 |
[18] |
YOSHIKAWA C, ZHANG K, ZAWADZAK E, et al. A novel shortened electrospun nanofiber modified with a concentrated polymer brush[J]. Sci Technol Adv Mater, 2019,12(1):015003.
doi: 10.1088/1468-6996/12/1/015003 |
[19] |
BODA S K, CHEN S, CHU K, et al. Electrospraying electrospun nanofiber segments into injectable microspheres for potential cell delivery[J]. ACS Appl Mater Interfaces, 2018,10(30):25069-25079.
doi: 10.1021/acsami.8b06386 |
[20] |
SAWAWI M, WANG T Y, NISBET D R, et al. Scission of electrospun polymer fibres by ultrasonication[J]. Polymer, 2013,54(16):4237-4252.
doi: 10.1016/j.polymer.2013.05.060 |
[21] |
FRIEDEMANN K, CORRALES T, KAPPL M, et al. Facile and large-scale fabrication of anisometric particles from fibers synthesized by colloid-electrospinning[J]. Small, 2012,8(1):144-153.
doi: 10.1002/smll.201101247 |
[22] |
LI H, WAN H, XIA T, et al. Therapeutic angiogenesis in ischemic muscles after local injection of fragmented fibers with loaded traditional Chinese medicine[J]. Nanoscale, 2015,7(30):13075-13087.
doi: 10.1039/C5NR02005K |
[23] |
WEI J, LEI D, CHEN M, et al. Engineering HepG2 spheroids with injectable fiber fragments as predictable models for drug metabolism and tumor infiltration[J]. J Biomed Mater Res Part B, 2020,108(8):3331-3344.
doi: 10.1002/jbm.b.v108.8 |
[24] |
OMIDINIA-ANARKOLI A, BOESVELD S, TUVSHINDORJ U, et al. An injectable hybrid hydrogel with oriented short fibers induces unidirectional growth of functional nerve cells[J]. Small, 2017,13(36):1702207.
doi: 10.1002/smll.v13.36 |
[25] | JOHN J V, CHOKSI M, CHEN S, et al. Tethering peptides onto biomimetic and injectable nanofiber microspheres to direct cellular response[J]. Nanomedicine, 2019,22:102081. |
[26] |
FENG Z Q, SHI C, ZHAO B, et al. Magnetic electrospun short nanofibers wrapped graphene oxide as a promising biomaterials for guiding cellular behavior[J]. Mater Sci Eng C-Mater Biol Appl, 2017,81:314-320.
doi: 10.1016/j.msec.2017.08.015 |
[27] |
WEI J, LUO X, CHEN M, et al. Spatial distribution and antitumor activities after intratumoral injection of fragmented fibers with loaded hydroxycamptothecin[J]. Acta Biomater, 2015,23:189-200.
doi: 10.1016/j.actbio.2015.05.020 |
[28] |
HE N, CHEN Z, YUAN J, et al. Tumor pH-Responsive release of drug-conjugated micelles from fiber fragments for intratumoral chemotherapy[J]. ACS Appl Mater Interfaces, 2017,9(38):32534-32544.
doi: 10.1021/acsami.7b09519 |
[29] |
CHEN Z, LIU W, ZHAO L, et al. Acid-labile degradation of injectable fiber fragments to release bioreducible micelles for targeted cancer therapy[J]. Biomacromolecules, 2018,19(4):1100-1110.
doi: 10.1021/acs.biomac.7b01696 |
[30] |
WANG T Y, BRUGGEMAN K F, KAUHAUSEN J A, et al. Functionalized composite scaffolds improve the engraftment of transplanted dopaminergic progenitors in a mouse model of Parkinson's disease[J]. Biomaterials, 2016,74:89-98.
doi: 10.1016/j.biomaterials.2015.09.039 |
[31] |
XIAO Y, LIN L, SHEN M, et al. Design of DNA aptamer-functionalized magnetic short nanofibers for efficient capture and release of circulating tumor cells[J]. Bioconjugate Chem, 2020,31(1):130-138.
doi: 10.1021/acs.bioconjchem.9b00816 |
[32] |
ZHAO Y L, JIE X, SHI X Y, et al. Capturing cancer cells using hyaluronic acid-immobilized electrospun random or aligned PLA nanofibers[J]. Colloid Surf A-Physicochem Eng Asp, 2019,583:123978.
doi: 10.1016/j.colsurfa.2019.123978 |
[33] | FEHM T, MULLER V, ALIX-PANABIERES C, et al. Micrometastatic spread in breast cancer: detection, molecular characterization and clinical relevance[J]. Breast Cancer Res, 2008,10(S1):1-10. |
[34] |
YOON H J, SHANKER A, WANG Y, et al. Tunable thermal-sensitive polymer-graphene oxide composite for efficient capture and release of viable circulating tumor cells[J]. Adv Mater, 2016,28(24):4891-4897.
doi: 10.1002/adma.v28.24 |
[35] |
LEE A W, LIN F X, WEI P L, et al. Binary-blend fibber-based capture assay of circulating tumor cells for clinical diagnosis of colorectal cancer[J]. J Nanobiotechnol, 2018,16:4.
doi: 10.1186/s12951-017-0330-1 |
[36] |
LIU H, SUN N, DING P, et al. Fabrication of aptamer modified TiO2 nanofibers for specific capture of circulating tumor cells[J]. Colloid Surf B-Biointerfaces, 2020,191:110985.
doi: 10.1016/j.colsurfb.2020.110985 |
[37] |
FAN Z Y, ZHAO Y L, ZHU X Y, et al. Folic acid modified electrospun poly(vinyl alcohol)/polyethyleneimine nanofibers for cancer cell capture applications[J]. Chin J Polym Sci, 2016,34(6):755-765.
doi: 10.1007/s10118-016-1792-6 |
[38] |
YANG G, LI X, HE Y, et al. Capturing circulating tumor cells through a combination of hierarchical nanotopography and surface chemistry[J]. ACS Biomater Sci Eng, 2018,4(6):2081-2088.
doi: 10.1021/acsbiomaterials.7b00683 |
[39] |
HE P, LI Y, HUANG Z, et al. A mu.pngunctional coaxial fiber membrane loaded with dual drugs for guided tissue regeneration[J]. J Biomater Appl, 2020,34(8):1041-1051.
doi: 10.1177/0885328219894001 |
[40] |
XIE Z, PARAS C B, WENG H, et al. Dual growth factor releasing multi-functional nanofibers for wound healing[J]. Acta Biomater, 2013,9(12):9351-9359.
doi: 10.1016/j.actbio.2013.07.030 |
[41] |
HE P, ZHONG Q, GE Y, et al. Dual drug loaded coaxial electrospun PLGA/PVP fiber for guided tissue regeneration under control of infection[J]. Mater Sci Eng C-Mater Biol Appl, 2018,90:549-556.
doi: 10.1016/j.msec.2018.04.014 |
[42] |
BODA S K, WANG H J, JOHN J V, et al. Dual delivery of alendronate and E7-BMP-2 peptide via calcium chelation to mineralized nanofiber fragments for alveolar bone regeneration[J]. ACS Biomater Sci Eng, 2020,6(4):2368-2375.
doi: 10.1021/acsbiomaterials.0c00145 |
[43] |
YU H, CHEN X J, CAI J, et al. Novel porous three-dimensional nanofibrous scaffolds for accelerating wound healing[J]. Chem Eng J, 2019,369:253-262.
doi: 10.1016/j.cej.2019.03.091 |
[1] | 郭凤云, 过子怡, 高蕾, 郑霖婧. 热粘结复合纤维人造血管支架的制备及其性能[J]. 纺织学报, 2021, 42(06): 46-50. |
[2] | 代阳, 杨楠楠, 肖渊. 静电纺碳纳米管电阻式柔性湿度传感器的制备及其性能[J]. 纺织学报, 2021, 42(06): 51-56. |
[3] | 陈玉, 夏鑫. 锂离子电池液态GaSn自修复负极材料的制备及其电化学性能[J]. 纺织学报, 2021, 42(06): 57-62. |
[4] | 刘晓倩, 陈玉, 周惠敏, 闫源, 夏鑫. 等离子体接枝丙烯酸改性聚丙烯腈导电纳米纤维纱线的制备[J]. 纺织学报, 2021, 42(05): 109-114. |
[5] | 王春红, 李明, 龙碧旋, 才英杰, 王利剑, 左祺. 聚乙烯醇/海藻酸钠/黄连素医用敷料制备及其性能[J]. 纺织学报, 2021, 42(05): 16-22. |
[6] | 竺哲欣, 马晓吉, 夏林, 吕汪洋, 陈文兴. 氯离子协同增强十六氯铁酞菁/聚丙烯腈复合纳米纤维光催化降解性能[J]. 纺织学报, 2021, 42(05): 9-15. |
[7] | 张林, 李至诚, 郑钦元, 董隽, 章寅. 基于静电纺丝的柔性各向异性应变传感器的制备及其性能[J]. 纺织学报, 2021, 42(05): 38-45. |
[8] | 余美琼, 袁红梅, 陈礼辉. 纤维素/氯化锂/N, N-二甲基乙酰胺溶液的流变性能[J]. 纺织学报, 2021, 42(05): 23-30. |
[9] | 赵新哲, 王绍霞, 高晶, 王璐. 静电纺胶原/聚环氧乙烷纳米纤维膜的制备及其性能[J]. 纺织学报, 2021, 42(04): 33-41. |
[10] | 成悦, 安琪, 李大伟, 付译鋆, 张伟, 张瑜. SiO2原位掺杂聚偏氟乙烯纳米纤维膜的制备及其性能[J]. 纺织学报, 2021, 42(03): 71-76. |
[11] | 张亦可, 贾凡, 桂澄, 晋蕊, 李戎. 碳纳米管/聚偏氟乙烯纳米纤维膜的制备及其压电性能[J]. 纺织学报, 2021, 42(03): 44-49. |
[12] | 邢宇声, 胡毅, 程钟灵. Si/TiO2复合碳纳米纤维的制备及其性能[J]. 纺织学报, 2021, 42(03): 36-43. |
[13] | 胡静, 张开威, 李冉冉, 林金友, 刘宇清. 亚麻分层纳米纤维素的制备及其增强热电复合材料性能[J]. 纺织学报, 2021, 42(02): 47-52. |
[14] | 郭雪松, 顾嘉怡, 胡建臣, 魏真真, 赵燕. 聚丙烯腈/羧基丁苯乳胶复合纳米纤维膜的制备及其性能[J]. 纺织学报, 2021, 42(02): 34-40. |
[15] | 陈云博, 朱翔宇, 李祥, 余弘, 李卫东, 徐红, 隋晓锋. 相变调温纺织品制备方法的研究进展[J]. 纺织学报, 2021, 42(01): 167-174. |
|