纺织学报 ›› 2021, Vol. 42 ›› Issue (02): 1-6.doi: 10.13475/j.fzxb.20210106206

• 特邀论文 •    下一篇

丝素粉体/颜料复合体耐热真空升华色牢度提升机制

曹根阳, 王运利, 盛丹, 潘恒, 徐卫林()   

  1. 武汉纺织大学 纺织新材料与先进加工技术国家重点实验室, 湖北 武汉 430200
  • 收稿日期:2021-01-05 修回日期:2021-01-25 出版日期:2021-02-15 发布日期:2021-02-23
  • 通讯作者: 徐卫林
  • 作者简介:曹根阳(1981—),男,副教授,博士。主要研究方向为高性能纤维的染色。
  • 基金资助:
    中央引导地方科技发展资金专项(2020ZYD038)

Promotion mechanism of color fastness to sublimation in thermovacuum environmental conditions for fibroin powder/pigment complex

CAO Genyang, WANG Yunli, SHENG Dan, PAN Heng, XU Weilin()   

  1. State Key Laboratory of New Textile Materials and Advanced Processing Technologies,Wuhan Textile University, Wuhan, Hubei 430200, China
  • Received:2021-01-05 Revised:2021-01-25 Online:2021-02-15 Published:2021-02-23
  • Contact: XU Weilin

摘要:

为提高有色织物上颜料粒子在热真空环境条件下的耐升华色牢度,考察了颜料萘酚红F3RK颗粒和丝素粉体的表面形貌、粒径和分子结构。采用颜料粒子与丝素粉体混合对织物进行颜色调控,利用负压流体场模拟热真空环境下的热力场,研究了颜料粒子和丝素粉体在不同比例下的吸附性能,并探讨了丝素粉体与颜料粒子之间的相互作用机制,构建了微纳米丝素粉体提升涂料印花织物耐升华色牢度的理论模型。结果表明:丝素粉体通过其比表面积大和含有酰胺键的官能团协同作用解决了有色织物热真空沾色问题,耐升华色牢度达到了5级。该方法对极端环境条件下提高有色织物的耐升华色牢度具有借鉴意义。

关键词: 丝素粉体, 纳米颜料, 印花, 热真空环境, 耐升华色牢度

Abstract:

In order to improve the thermal sublimation fastness of pigment particles on colored fabrics under thermovacuum environmental conditions, surface morphology, particle size and molecular structure of naphthol red F3RK pigment particles and silk fibroin powders were investigated, and the color of the fabric was tuned by mixing pigment particles with silk fibroin powder at different ratios. The subatomospheric pressure is used to simulate the thermal force field in the thermalvacuum environment, under which the adsorption performance was studied under different mixing ratios between pigment particles and silk fibroin powder. The interaction between silk fibroin powders and pigment particles were discussed, and the theoretical model was established. The results show that the silk fibroin powder is effective in improving thermal sublimation of colored fabrics in thermovacuum environmental conditions due to the synergistic effect of its large specific surface area and amido bonds. Employment of this method increases thermal sublimation fastness to level 5. The results of this study are of referencing significance for improving the thermal sublimation fastness of colored fabrics under extreme environmental conditions.

Key words: silk fibroin powder, nano-pigment, printing, thermovacuum environmental condition, thermal sublimation fastness

中图分类号: 

  • TS194.2

图1

丝素粉体及萘酚红F3RK性能"

图2

萘酚红F3RK粒子及其被丝素粉体吸附形貌图"

图3

复合比例对丝素粉体吸附量的影响"

图4

不同粉体的储能模量"

图5

微纳米丝素粉体对涂料膜结构调控模型"

图6

丝素粉体调控前后经6.5次高真空高低温循环样品图"

表1

丝素粉体调控织物耐热升华色牢度"

样品 耐热升华色牢度/级
红色 黄色
未调控样品 1 2
调控样品 5 5
[1] 孙志彬, 丁立, 田寅生, 等. 模拟太空环境下织物导热系数的测试研究[J]. 航天医学与医学工程, 2014,27(4):276-279.
SUN Zhibin, DING Li, TIAN Yansheng, et al. Experimental study on thermal conductivity of textile material in simulated space environment[J]. Space Medicine & Medical Engineering, 2014,27(4):276-279.
[2] 孙晓婷, 郭亚. 高性能纤维的性能及应用[J]. 成都纺织高等专科学校学报, 2017,34(2):216-219.
SUN Xiaoting, GUO Ya. Properties and applications of high performance fiber[J]. Journal of Chengdu Textile College, 2017,34(2):216-219.
[3] 王红, 楚久英. 芳香族聚酰胺纤维研究进展及应用[J]. 国际纺织导报, 2020,48(4):4, 6-9.
WANG Hong, CHU Jiuying. Research progress and application of aromatic polyamide fiber[J]. Melliand China, 2020,48(4):4, 6-9.
[4] 袁玥, 李鹏飞, 凌新龙. 芳纶纤维的研究现状与进展[J]. 纺织科学与工程学报, 2019,36(1):146-152.
YUAN Yue, LI Pengfei, LING Xinlong. Research status and progress of aramid fibers[J]. Journal of Textile Science and Engineering, 2019,36(1):146-152.
[5] 宋翠艳, 宋西全, 邓召良. 间位芳纶的技术现状和发展方向[J]. 纺织学报, 2012,33(6):125-128,135.
SONG Cuiyan, SONG Xiquan, DENG Zhaoliang. Technology status and development trend of m-aramid fibers[J]. Journal of Textile Research, 2012,33(6):125-128,135.
[6] WU Y J, SEFERIS J C, LORENTZ V. Evaluations of an aramid fiber in nonwoven processes for honeycomb applications[J]. Journal of Applied Polymer Science, 2002,86(5):1149-1156.
[7] 邓婷婷, 张光先, 代方银, 等. 对位芳纶磷酸化表面改性[J]. 纺织学报, 2015,36(11):12-19.
DENG Tingting, ZHANG Guangxian, DAI Fangyin, et al. Surface modification of para-aramid fiber by phosphoric acid[J]. Journal of Textile Research, 2015,36(11):12-19.
[8] VOLOKHINA A V. High-strength aramid fibres made from polymer blends[J]. Fibre Chemistry, 2000,32(4):230-234.
[9] 朱正锋, 齐大鹏, 王军华, 等. 超声波处理对对位芳纶纤维侵蚀性能的影响[J]. 纺织学报, 2012,33(1):24-28.
ZHU Zhengfeng, QI Dapeng, WANG Junhua, et al. Erosion of para-aramid fiber caused by ultrasonic treatment[J]. Journal of Textile Research, 2012,33(1):24-28.
[10] 林琳. 对位芳纶的染色及纤维结构与性能研究[D]. 上海: 东华大学, 2015: 9-10.
LIN Lin. Study on the dyeing process of para-aramid fibers and their structure and properties[D]. Shanghai: Donghua University, 2015: 9-10.
[11] MIRIAM T L, ÁLVARO M O, SAÚL V, et al. Intrinsically colored wholly aromatic polyamides (aramids)[J]. Dyes and Pigments, 2015,122:177-183.
[12] 宋翠艳, 宋西全, 王中平. 原液着色间位芳纶短纤维及其制备方法: ZL2006100436603[P]. 2006-10-18.
SONG Cuiyan, SONG Xiquan, WANG Zhongping. Dope colored meta-aramid staple fiber and its preparation method: ZL2006100436603[P]. 2006-10-18.
[13] SHENG D, WANG Y L, WANG X, et al. Low- temperature dyeing of meta-aramid fabrics pretreated with 2-phenoxyethanol[J]. Coloration Technology, 2017,133(4):320-324.
[14] KIM E M, CHOI J H. Dyeing properties and color fastness of 100% meta-aramid fiber[J]. Fibers and Polymers, 2011,12(4):484-490.
doi: 10.1007/s12221-011-0484-7
[15] 林自源. 航天服材料与发展动向[J]. 中国空间科学技术, 1989(4):48-54.
LIN Ziyuan. Material of space suit and developing trend[J]. Chinses Space Science and Technology, 1989(4):48-54.
[16] 胡彬慧, 何秀玲, 谢启凡, 等. 雄蚕生丝的热学性能研究[J]. 蚕业科学, 2016,42(2):294-301.
HU Binhui, HE Xiuling, XIE Qifan, et al. Research in thermal properties of raw silk of male silkworm[J]. Science of Sericulture, 2016,42(2):294-301.
[1] 沈瑞超, 郗欣甫, 孙以泽. 三维增材鞋面印花机对位平台的冗余驱动控制策略[J]. 纺织学报, 2020, 41(10): 164-169.
[2] 郑畑子, 王建萍. 服装印花图案设计的感性研究[J]. 纺织学报, 2020, 41(08): 101-107.
[3] 金诗怡, 周赳. 具有双层效果的提花-印花-剪花织物的设计[J]. 纺织学报, 2020, 41(06): 48-54.
[4] 侯学妮, 陈国强, 邢铁玲. 活性墨水流体特性对喷射性能的影响[J]. 纺织学报, 2020, 41(03): 91-99.
[5] 贾小军, 叶利华, 邓洪涛, 刘子豪, 陆锋杰. 基于卷积神经网络的蓝印花布纹样基元分类[J]. 纺织学报, 2020, 41(01): 110-117.
[6] 王晓晖, 刘月刚, 孟婥, 孙以泽. 基于遗传算法和神经网络的3D增材印花工艺参数优化[J]. 纺织学报, 2019, 40(11): 168-174.
[7] 叶嘉浩, 王莉莉, 吴明华, 郭文登, 汪可豪, 陈妮. 蚕丝织物同花同色双面数码喷墨印花上浆工艺[J]. 纺织学报, 2019, 40(10): 92-97.
[8] 陈智杰, 胡旭东, 黄卓, 宋丽苗, 戚栋明, 向忠. 基于细乳液法含硅颜料胶囊的制备及其对涤纶的印花性能[J]. 纺织学报, 2019, 40(08): 69-75.
[9] 杨海贞, 房宽峻, 刘秀明, 蔡玉青, 安芳芳, 韩双. 棉织物组织结构对墨滴铺展及颜色性能的影响[J]. 纺织学报, 2019, 40(07): 78-84.
[10] 艾丽, 朱亚伟. 黏合剂的合成及其在分散蓝79微水印花中的应用[J]. 纺织学报, 2019, 40(06): 50-57.
[11] 安芳芳, 房宽峻, 刘秀明, 蔡玉青, 韩双, 杨海贞. 羊毛织物的蛋白酶改性对墨滴铺展及颜色性能的影响[J]. 纺织学报, 2019, 40(06): 58-63.
[12] 杨海贞, 房宽峻, 刘秀明, 蔡玉青, 安芳芳, 韩双. 喷墨印花预处理对织物组织结构的影响[J]. 纺织学报, 2019, 40(05): 84-90.
[13] 田全慧, 顾萍, 朱明. 波段分区的数码喷墨印花机光谱特性化模型[J]. 纺织学报, 2019, 40(04): 140-144.
[14] 王东伟, 房宽峻, 刘秀明, 张健飞, 舒大武, 张鑫卿. 彩色聚合物微球的制备及其在纺织品印染中应用的研究进展[J]. 纺织学报, 2019, 40(03): 175-182.
[15] 陈智杰, 周鹏, 杜春晓, 金黔宏, 戚栋明, 向忠. 丙烯酸酯-有机硅/有机颜料亚微胶囊在涂料印花中的应用[J]. 纺织学报, 2019, 40(03): 102-108.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!