纺织学报 ›› 2022, Vol. 43 ›› Issue (04): 187-193.doi: 10.13475/j.fzxb.20210201307

• 综合述评 • 上一篇    下一篇

碳纳米管基吸波复合材料的制备及其在纺织领域的应用研究进展

禄倩倩1, 唐俊雄2, 刘元军1,3,4(), 赵晓明1,3,4   

  1. 1.天津工业大学 纺织科学与工程学院, 天津 300387
    2.湖北华强科技股份有限公司, 湖北 宜昌 443000
    3.天津工业大学 天津市先进纺织复合材料重点实验室, 天津 300387
    4.天津工业大学 天津市先进纤维与储能技术重点实验室, 天津 300387
  • 收稿日期:2021-02-03 修回日期:2022-01-10 出版日期:2022-04-15 发布日期:2022-04-20
  • 通讯作者: 刘元军
  • 作者简介:禄倩倩(1998—),女,硕士生。主要研究方向为电磁防护纺织品。
  • 基金资助:
    中国工程院咨询研究项目(2021DFZD1);天津市科技计划项目创新平台专项资助项目(17PTSYJC00150);天津市研究生科研创新项目(2021YJSS075)

Research progress in preparation of carbon nanotubes based wave absorbing composites and its applications in textile field

LU Qianqian1, TANG Junxiong2, LIU Yuanjun1,3,4(), ZHAO Xiaoming1,3,4   

  1. 1. School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
    2. Hubei Huaqiang High-Tech Co., Ltd., Yichang, Hubei 443000, China
    3. Key Laboratory of Tianjin of Advanced Textile Composites,Tiangong University, Tianjin 300387, China
    4. Tianjin Key Laboratory of Advanced Fibers and Energy Storage,Tiangong University, Tianjin 300387, China
  • Received:2021-02-03 Revised:2022-01-10 Published:2022-04-15 Online:2022-04-20
  • Contact: LIU Yuanjun

摘要:

为有效解决碳纳米管在电磁吸波领域存在磁损耗性能弱和阻抗不匹配的问题,综述了近期国内外碳纳米管和磁性金属类复合材料电磁波吸收性能的最新研究进展。首先介绍了碳纳米管的吸波机制;其次围绕碳纳米管进行分析,详细总结了碳纳米管和磁性金属及其金属化合物复合材料的制备方法、影响因素、吸波机制和吸波效果,同时阐述了其在纺织领域的制备及应用。最后指出:碳纳米管和磁性金属类复合材料可够充分发挥多组分损耗的协同作用,提高阻抗匹配,实现轻质、高强和宽频的电磁波吸收效果,与纺织材料结合制备吸波复合材料能充分发挥二者的优势,在未来具有良好的应用前景。

关键词: 碳纳米管, 电磁吸波, 纺织复合材料, 磁性金属, 金属氧化物, 金属硫化物

Abstract:

In order to solve the problems of weak magnetic loss and impedance mismatch of carbon nanotubes (CNTs) in electromagnetic absorption field, the recent research progress in electromagnetic absorption properties of CNTs and magnetic metal composites was reviewed. The wave absorbing mechanism of carbon nanotubes is briefly introduced, before the preparation method, influencing factors, absorbing mechanisms and absorbing effects of carbon nanotubes, magnetic metals and metal compound composites were summarized in detail. The preparation and application of such materials in the textile field were introduced. It is pointed out that carbon nanotubes and magnetic metal composites can give full play to the synergistic effect of multi-component loss, improve impedance matching, and achieve the absorption effect of light, high strength and broadband electromagnetic waves. The wave absorbing composites prepared by the combination of wave absorbing materials and textile materials can give full play to their advantages and have a good application prospect in the future.

Key words: carbon nanotube, electromagnetic absorption, textile composite, magnetic metal, metal oxide, metal sulphide

中图分类号: 

  • TS101.8

表1

碳纳米管-金属类复合材料吸波参数表"

吸波材料 制备方法 填充物质量分数
(基体中)/%
厚度/
mm
频率/
GHz
最小反射损
耗值/dB
有效带
宽/GHz
文献
来源
碳纳米管/铁 化学气相沉积法 4 2.9 6.1 -28.3 6.1 [16]
氮掺杂碳纳米管/铁 原位合成法 10 3.2 8.64 -30.43 5.76 [17]
碳纳米管/钴 高温煅烧法 30 1.9 6.24 -70.8 4.75 [21]
碳纳米管/钴/碳海绵 浸涂和炭化法 10 2.2 12 -51.2 4.1 [22]
碳纳米管/镍钴合金/碳纳米棒 烧结法 5 2.6 14 -58.8 6.5 [23]
碳纳米管/四氧化三铁/活性炭纤维 化学气相沉积法 28.6 2.5 14.4 -46.828 7.2 [26]
碳纳米管/氧化锰/碳 化学气相沉积法 40 6.2 3.8 -60.5 14.2 [25]
碳纳米管/四氧化三钴/钴/碳/石墨烯 高温热解法 20 2.5 11.2 -59.2 5.7 [27]
碳纳米管/钡铁氧体 化学气相沉积和球磨法 70 2 9.3 -21.5 2.5 [28]
多壁碳纳米管/二硫化钼 机械共混法 10 2 9.2 -37.07 2.08 [30]
碳纳米管/二硫化钼/镍 化学气相沉积法 30 2.4 11.92 -50.08 6.04 [31]
碳纳米管/二硫化钨/硫化氮 水热法 40 1.95 14.8 -51.6 5.4 [32]
[1] 许迎东. 基于碳纳米管/硅橡胶复合材料的多层结构微波吸收性能研究[D]. 武汉: 华中科技大学, 2019: 2-4.
XU Yingdong. Microwave absorption properties of multilayer structures based on carbon nanotubes/silicone rubber composites[D]. Wuhan: Huazhong University of Science and Technology, 2019: 2-4.
[2] 张换换. 碳纳米管化学修饰碳纤维及其电磁特性研究[D]. 太原: 太原科技大学, 2016: 8-10.
ZHANG Huanhuan. Study on the carbon nanotube chemically modified carbon fiber and its electromagnetic properties[D]. Taiyuan: Taiyuan University of Science and Technology, 2016: 8-10.
[3] 李伟文. PAN/MWCNTs微纳米纤维膜的制备及其层合板复合材料的吸波性能研究[D]. 上海: 东华大学, 2015: 5-9.
LI Weiwen. Preparation of PAN/MWCNTs micro/nano-fiber membrane and microwave absorbing performance of its laminated structure composites[D]. Shanghai: Donghua University, 2015: 5-9.
[4] 陈明东. 碳纳米管复合材料微波吸收性能的模拟计算及其优化[D]. 广州: 广东工业大学, 2015: 3-7.
CHEN Mingdong. Simulation and optimization on micro wave absorbing properties of carbon nanotubes composite materials[D]. Guangzhou: Guangdong University of Technology, 2015: 3-7.
[5] 李紫芳. 基于FDTD方法的碳系填充型复合材料的研究[D]. 成都: 电子科技大学, 2017: 6-15.
LI Zifang. Research of carbon-based composite materials based on FDTD method[D]. Chengdu: University of Electronic Science and Technology, 2017: 6-15.
[6] 吴楠楠. 磁性纳米复合材料的制备及其电磁波吸收性能[D]. 济南: 山东大学, 2019: 18-19.
WU Nannan. Preparation and electromagnetic wave absorption properties of magnetic nanocomposites[D]. Jinan: Shandong University, 2019: 18-19.
[7] 张雨. 植入磁性颗粒的掺氮碳纳米管制备及其吸波性能研究[D]. 南京: 南京大学, 2018: 60-65.
ZHANG Yu. Preparation and microwave absorption of magnetical particles/nitrogen-doped carbon nano-tubes[D]. Nanjing: Nanjing University, 2018: 60-65.
[8] 臧充光, 张玉龙, 朱祥东, 等. 镀镍碳纳米管/环氧树脂复合材料的吸波性能研究[J]. 中国科技论文, 2016, 11(16): 1872-1877.
ZANG Chongguang, ZHANG Yulong, ZHU Xiangdong, et al. Study on the absorption performance of nike-plated MWCNTs/epoxy composites[J]. China Science Paper, 2016, 11(16): 1872-1877.
[9] ZHU X Y, QIU H F, CHEN P, et al. Environmentally friendly synthesis of velutipes-shaped Ni@CNTs composites as efficient thin microwave absorbers[J]. Journal of Electronic Materials, 2020, 49(9): 5368-5378.
doi: 10.1007/s11664-020-08248-x
[10] ZHAO H Q, CHEN Y, LIANG X H, et al. Constructing large interconnect conductive networks: an effective approach for excellent electromagnetic wave absorption at gigahertz[J]. Industrial & Engineering Chemistry Research, 2018, 57(6): 2155-2164.
doi: 10.1021/acs.iecr.7b05141
[11] LV H L, JI G B, ZHANG H Q, et al. Facile synthesis of a CNT@Fe@SiO2 ternary composite with enhanced microwave absorption performance[J]. RSC Advances, 2015, 5(94): 76836-76843.
doi: 10.1039/C5RA11162E
[12] XU X Q, RAN F T, FAN Z M, et al. Cactus-inspired bimetallic metal-organic frameworks derived 1D-2D hierarchical Co/N-decorated carbon architecture towards enhanced electromagnetic wave absorbing perfor-mance[J]. ACS Applied Materials & Interfaces, 2019, 11(14): 13564-13573.
[13] QIU Y, YANG H B, MA L, et al. In situ-derived carbon nanotube-decorated nitrogen-doped carbon-coated nickel hybrids from MOF/melamine for efficient electromagnetic wave absorption[J]. Journal of Colloid and Interface Science, 2021, 581: 783-793.
doi: 10.1016/j.jcis.2020.07.151
[14] CHENG Y, CAO J M, LV H L, et al. In situ regulating aspect ratio of bamboo-like CNTs via CoxNi1-x-catalyzed growth to pursue superior microwave attenuation in X-band[J]. Inorganic Chemistry Frontiers, 2019, 6(1): 309-316.
doi: 10.1039/C8QI01102H
[15] YANG H B, WEN B, WANG L, et al. Carbon nanotubes modified CoZn/C composites with rambutan-like applied to electromagnetic wave absorption[J]. Applied Surface Science, 2020, 509: 145336.
doi: 10.1016/j.apsusc.2020.145336
[16] LIU Y, LAI J, SHI J F, et al. Effects of the deposition temperature on the microwave-absorption performance of Fe/CNT composites[J]. New Carbon Materials, 2020, 35(4): 428-435.
doi: 10.1016/S1872-5805(20)60500-5
[17] NING M Q, LI J B, KUANG B Y, et al. One-step fabrication of N-doped CNTs encapsulating M nanoparticles (M=Fe, Co, Ni) for efficient microwave absorption[J]. Applied Surface Science, 2018, 447: 244-253.
doi: 10.1016/j.apsusc.2018.03.242
[18] ZHANG X C, ZHANG X, YUAN H R, et al. CoNi nanoparticles encapsulated by nitrogen-doped carbon nanotube arrays on reduced graphene oxide sheets for electromagnetic wave absorption[J]. Chemical Engineering Journal, 2020, 383: 123208.
doi: 10.1016/j.cej.2019.123208
[19] WANG L, WEN B, QIU Y, et al. Structurally designed hierarchical carbon nanotubes vertically anchored on elliptical-like carbon nanosheets with enhanced conduction loss as high-performance electromagnetic wave absorbent[J]. Synthetic Metals, 2020, 261: 116301.
doi: 10.1016/j.synthmet.2020.116301
[20] 鲁世斌. MOFs衍生的金属/金属氧化物与MWCNTs复合材料制备及电磁波吸收性能研究[D]. 合肥: 安徽大学, 2019: 8-11.
LU Shibin. Study on preparation and electromagnetic wave absorption properties of MOF-derived metal/metal oxides and multi-walled carbon nanotubes compo-sites[D]. Hefei: Anhui University, 2019: 8-11.
[21] LIANG C, YU Y, CHEN C L, et al. Rational design of CNTs with encapsulated Co nanospheres as superior acidic-and-basic-resistant microwave absorber[J]. Dalton Transactions, 2018, 47(33): 11554-11562.
doi: 10.1039/C8DT02037J
[22] YANG N, LUO Z X, ZHU G R, et al. Ultralight three-dimensional hierarchical cobalt nanocrystals/N-doped CNTs/carbon sponge composites with hollow skeleton toward superior microwave absorption[J]. ACS Applied Materials & Interfaces, 2019, 11(39): 35987-35998.
[23] WANG L, WEN B, BAI X Y, et al. NiCo alloy/carbon nanorods decorated with carbon nanotubes for microwave absorption[J]. ACS Applied Nano Materials, 2019, 2(12): 7827-7838.
doi: 10.1021/acsanm.9b01842
[24] 庞慧芳. 纳米碳-锰氧化物复合材料的合成及其吸波性能研究[D]. 大连: 大连理工大学, 2019: 11-14.
PANG Huifang. Synthesis and microwave absorption properties of carbon-manganese oxide nanocompo-sites[D]. Dalian: Dalian University of Technology, 2019: 11-14.
[25] YAN X Y, DUAN Y L, HOU L Q, et al. Enhanced electromagnetic wave absorption of worm-like hollow porous MnO@C/CNTs composites[J]. Journal of Alloys and Compounds, 2019, 797: 1086-1094.
doi: 10.1016/j.jallcom.2019.05.123
[26] GAO X H, WU X Y, QIU J, et al. High electromagnetic waves absorbing performance of a multilayer-like structure absorber containing activated carbon hollow porous fibers-carbon nanotubes and Fe3O4 nanoparticles[J]. Advanced Electronic Materials, 2018, 4(5): 1700565.
doi: 10.1002/aelm.201700565
[27] WANG Y, DI X C, WU X M, et al. MOF-derived nanoporous carbon/Co/Co3O4/CNTs/RGO composite with hierarchical structure as a high-efficiency electromagnetic wave absorber[J]. Journal of Alloys and Compounds, 2020, 846: 156215.
doi: 10.1016/j.jallcom.2020.156215
[28] ZHAO T K, JI X L, JIN W B, et al. Electromagnetic wave absorbing properties of aligned amorphous carbon nanotube/BaFe12O19 nanorod composite[J]. Journal of Alloys and Compounds, 2017, 703: 424-430.
doi: 10.1016/j.jallcom.2017.02.014
[29] WANG C, MU C P, XIANG J Y, et al. Microwave synthesized In2S3@CNTs with excellent properties in lithiumion battery and electromagnetic wave absorp-tion[J]. Chinese Journal of Chemistry, 2018, 36(2): 157-161.
doi: 10.1002/cjoc.201700499
[30] 赵鹏飞, 耿浩然, 范浩军, 等. 二硫化钼/碳纳米管/丁苯橡胶吸波材料的结构与性能[J]. 材料导报, 2020, 34(14): 14204-14208.
ZHAO Pengfei, GENG Haoran, FAN Haojun, et al. Structure and property of microwave absorber based on molybdenum disulfide/multi-walled carbon nanotube/butadiene styrene rubber[J]. Materials Reports, 2020, 34(14): 14204-14208.
[31] 孙远. 二硫化相基纳米复合结构的设计、制备及微波吸收性能研究[D]. 南京: 南京大学, 2019: 106-108.
SUN Yuan. Design, preparation and microwave absorption performance of MoS2 based integrated nanostructures[D]. Nanjing: Nanjing University, 2019: 106-108.
[32] ZHANG D Q, WANG H H, CHENG J Y, et al. Conductive WS2-NS/CNTs hybrids based 3D ultra-thin mesh electromagnetic wave absorbers with excellent absorption performance[J]. Applied Surface Science, 2020, 528: 147052.
doi: 10.1016/j.apsusc.2020.147052
[33] ZHAO G L, GAO F, LI K, et al. Using natural cotton fibers to synthesize carbon nanotubes and electromagnetic wave absorption properties[J]. Materials Science and Engineering B: Advanced Functional Solid-State Materials, 2017, 224: 61-68.
doi: 10.1016/j.mseb.2017.07.006
[34] YANG M L, YUAN Y, LI Y, et al. Dramatically enhanced electromagnetic wave absorption of hierarchical CNT/Co/C fiber derived from cotton and metal-organic-framework[J]. Carbon, 2020, 161: 517-527.
doi: 10.1016/j.carbon.2020.01.073
[35] 汪心坤, 程兆刚, 赵芳, 等. MWCNTs/Zn0.96Co0.04O复合纳米纤维的电纺制备及其红外/雷达兼容隐身性能[J]. 稀有金属材料与工程, 2020, 49(12): 4262-4270.
WANG Xinkun, CHENG Zhaogang, ZHAO Fang, et al. Preparation of MWCNTs/Zn0.96Co0.04O composite nanofibers by electrospinning and their IR/radar compatible stealth properties[J]. Rare Metal Materials and Engineering, 2020, 49(12): 4262-4270.
[36] 王荣超. 静电纺Fe3O4/聚芳醚酮纳米复合纤维膜及电磁吸波性能[D]. 沈阳: 沈阳航空航天大学, 2016: 46-47.
WANG Rongchao. Fabrication and electromagnetic microwave absorption properties of electrospun ferrite/PEK-C composite nanofiber membranes[D]. Shenyang: Shenyang Aerospace University, 2016: 46-47.
[37] FENG Y R, GUO X, LU J B, et al. Enhanced electromagnetic wave absorption performance of SiCN(Fe) fibers by in-situ generated Fe3Si and CNTs[J]. Ceramics International, 2021, 47(14): 19582-19594.
doi: 10.1016/j.ceramint.2021.03.296
[38] 李焕然, 马关胜, 杨智伟, 等. Fe3O4/CNTs@Cf复合材料的制备及其吸波性能的研究[J]. 功能材料, 2021, 52(4): 4023-4029.
LI Huanran, MA Guansheng, YANG Zhiwei, et al. Preparation and absorption properties of Fe3O4/CNTs@Cf composites[J]. Journal of Functional Materials, 2021, 52(4): 4023-4029.
[39] 李宝毅, 张换换, 王东红, 等. 氧化处理对碳纤维表面碳纳米管修饰效果及其电磁性能的影响研究[J]. 功能材料, 2018, 49(10): 10075-10079.
LI Baoyi, ZHANG Huanhuan, WANG Donghong, et al. Effect of oxidation treatment on the modification effect and electromagnetic properties of carbon nanotubes on carbon fibers[J]. Journal of Functional Materials, 2018, 49(10): 10075-10079.
[40] WU F, LIU Z H, XIU T, et al. Fabrication of ultralight helical porous carbon fibers with CNTs-confined Ni nanoparticles for enhanced microwave absorption[J]. Composites Part B: Engineering, 2021, 215: 108814.
doi: 10.1016/j.compositesb.2021.108814
[41] XU J M, XIA L, LUO J H, et al. The high-performance electromagnetic wave absorbing CNT/SiCf composites: synthesis, tuning, and mechanism[J]. ACS Applied Materials & Interfaces, 2020, 12(18): 20775-20784.
[42] 段佳佳, 汪秀琛, 李亚云, 等. 混合型吸波涂层对电磁屏蔽织物吸波性能的影响[J]. 毛纺科技, 2019, 47(6): 38-42.
DUAN Jiajia, WANG Xiuchen, LI Yayun, et al. Effect of hybrid absorbing coating on microwave absorbing properties of electromagnetic shielding fabric[J]. Wool Textile Journal, 2019, 47(6): 38-42.
[43] ZOU L H, SHEN J H, XU Z Z, et al. Electromagnetic wave absorbing properties of cotton fabric with carbon nanotubes coating[J]. Fibers & Textiles in Eastern Europe, 2020, 28(5): 82-90.
[1] 徐晓彤, 江振林, 郑钦超, 朱科宇, 王朝生, 柯福佑. 导热结构对聚对苯二甲酸乙二醇酯非等温结晶行为的影响[J]. 纺织学报, 2022, 43(03): 44-49.
[2] 郭子娇, 李悦, 张瑞, 陆赞. 聚苯胺/Ti3C2Tx/碳纳米管复合纤维电极的制备及其性能[J]. 纺织学报, 2022, 43(02): 74-80.
[3] 万振凯, 贾敏瑞, 包玮琛. 三维编织复合材料中碳纳米管纱线嵌入位置和数量的优化配置[J]. 纺织学报, 2021, 42(09): 76-82.
[4] 檀江涛, 蒋高明, 高哲, 郑培晓. 抗低速冲击纺织复合材料头盔壳体研究进展[J]. 纺织学报, 2021, 42(08): 185-193.
[5] 张亚茹, 胡毅, 程钟灵, 许仕林. 聚丙烯腈基Si/C/碳纳米管复合碳纳米纤维膜的制备及其储能性能[J]. 纺织学报, 2021, 42(08): 49-56.
[6] 代阳, 杨楠楠, 肖渊. 静电纺碳纳米管电阻式柔性湿度传感器的制备及其性能[J]. 纺织学报, 2021, 42(06): 51-56.
[7] 汤健, 闫涛, 潘志娟. 导电复合纤维基柔性应变传感器的研究进展[J]. 纺织学报, 2021, 42(05): 168-177.
[8] 王璐, 韩雪, 娄琳, 何令华, 周小红. 电热防护手套研制及其在极端寒冷环境下的工效实验[J]. 纺织学报, 2021, 42(05): 150-154.
[9] 张润可, 吕汪洋, 陈文兴. 钴酞菁与碳纳米管共修饰碳纤维织物传感器的制备及其电化学性能[J]. 纺织学报, 2021, 42(04): 121-126.
[10] 张亦可, 贾凡, 桂澄, 晋蕊, 李戎. 碳纳米管/聚偏氟乙烯纳米纤维膜的制备及其压电性能[J]. 纺织学报, 2021, 42(03): 44-49.
[11] 夏云, 吕汪洋, 陈文兴. 模拟太阳光下金属酞菁/多壁碳纳米管催化降解染料[J]. 纺织学报, 2020, 41(12): 94-101.
[12] 李莉萍, 吴道义, 战奕凯, 何敏. 电泳沉积碳纳米管和氧化石墨烯修饰碳纤维表面的研究进展[J]. 纺织学报, 2020, 41(06): 168-173.
[13] 李鹏, 万振凯, 贾敏瑞. 基于碳纳米管纱线扭电能的复合材料损伤监测[J]. 纺织学报, 2020, 41(04): 58-63.
[14] 张娇, 高雪峰, 王玉周, 刘海辉, 张兴祥. 聚酰胺66/氨基化多壁碳纳米管纤维制备及其性能[J]. 纺织学报, 2019, 40(11): 1-8.
[15] 郭新月, 杨占平, 宋晓梅, 徐阳. 正二十烷/醋酸纤维素相变过滤材料的制备及其性能[J]. 纺织学报, 2019, 40(09): 15-21.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!