纺织学报 ›› 2021, Vol. 42 ›› Issue (09): 10-16.doi: 10.13475/j.fzxb.20210203507

• 特约专栏:智能纤维与制品 • 上一篇    下一篇

二维过渡金属碳/氮化合物复合纤维在智能可穿戴领域的应用进展

荣凯1,2, 樊威1,2(), 王琪1,2, 张聪1,2, 于洋1,2   

  1. 1.西安工程大学 纺织科学与工程学院, 陕西 西安 710048
    2.西安工程大学 功能性纺织材料及制品教育部重点实验室, 陕西 西安 710048
  • 收稿日期:2021-02-15 修回日期:2021-06-15 出版日期:2021-09-15 发布日期:2021-09-27
  • 通讯作者: 樊威
  • 作者简介:荣凯(1996—),男,硕士生。主要研究方向为MXene基复合纤维及智能可穿戴纺织品的制备与功能应用。
  • 基金资助:
    国家自然科学基金项目(52073224);陕西省创新能力支撑计划项目(2020PT-043);陕西省留学人员科技活动择优资助项目(12);西安工程大学博士科研启动项目(BS202053)

Application progress of two-dimensional transitional metal carbon/nitrogen compound composite in field of intelligent wearable textiles

RONG Kai1,2, FAN Wei1,2(), WANG Qi1,2, ZHANG Cong1,2, YU Yang1,2   

  1. 1. School of Textile Science and Engineering, Xi'an Polytechnic University, Xi'an, Shaanxi 710048, China
    2. Key Laboratory of Functional Textile Material and Product, Ministry of Education, Xi'an Polytechnic University, Xi'an, Shaanxi 710048, China
  • Received:2021-02-15 Revised:2021-06-15 Published:2021-09-15 Online:2021-09-27
  • Contact: FAN Wei

摘要:

针对传统纤维难以满足当前智能可穿戴设备需求,现有复合纤维大都不能兼具导电性能好、力学性能优、储能特性强等问题,归纳总结了一种新型二维过渡金属碳/氮化合物(MXene)复合纤维在智能可穿戴领域中的研究进展。首先从纤维制备角度介绍了MXene复合纤维的制备方法,包括涂覆法、双辊法、静电纺丝法和湿法纺丝法等,并分析了各种方法的优劣;然后对制备的MXene复合纤维在现阶段电磁屏蔽、超级电容器、柔性传感器等领域的应用进行系统介绍;最后对MXene复合纤维在智能可穿戴领域的未来发展进行展望,为新一代导电性高、力学性能优异、高能量储存复合纤维的研究提供新的思路。

关键词: 二维过渡金属碳/氮化合物, 智能可穿戴, 电磁屏蔽, 超级电容器, 柔性传感器

Abstract:

In view of the difficulty of traditional fibers in meeting the demand of current intelligent wearable devices, most existing composite fibers do not offer the appropriate electrical conductivity, mechanical properties, or energy storage capacity, this paper reviews the research progress in new two-dimensional transitional metal carbon/nitrogen compound (MXene) composite fibers used for intelligent wearables. Various preparation methods of MXene composite fibers (coating, double roll, electrospinning and wet spinning) were introduced, and the advantages as well as disadvantages of each method were analyzed. The applications of MXene composite fibers in electromagnetic shielding, supercapacitors, flexible sensors and other fields were systematically summarized. This paper also prospected the future development of MXene fibers in the field of intelligent wearable devices, providing new ideas for the research new generation of composite fibers with high electrical conductivity, excellent mechanical properties and high energy storage.

Key words: two-dimensional transitional metal carbon/nitrogen compound, intelligent wearable devices, electromagnetic shielding, supercapacitor, flexible sensor

中图分类号: 

  • TS102.6

图1

多层Ti3C2Tx-MXene的SEM照片"

表1

MXene复合纤维、纱线和织物的力学和电化学的性能"

制备方法 基底材料 MXene负
载量/%
直径/
μm
抗拉强
度/MPa
电导率/
(S·m-1)
比电容 电磁强
度/dB
应变/
%
循环稳
定性/次
参考
文献
涂覆 棉纱线 77 610 458.4 198.5 长度比电容为758.5 mF/cm 20 2 000 [18]
棉纤维 79 200 面积比电容为707 mF/cm2 10 000 [19]
涤纶长丝 1 000 42 1 000 [20]
湿法纺丝 纤维素纳米纤维 50 50 86.8 211 5 500 [21]
聚氨酯溶液 9.1 230 5 997 152 1 000 [22]
纯MXene溶液 100 46 40.5 7 748 体积比电容为1 265 F/cm3 [23]
双辊法 双层碳纳米管 97 120 26.6 体积比电容为1 083 F/cm3 15 [24]
单层碳纳米管 95 56 38 体积比电容为92 F/cm3 7.50 [25]
静电纺丝 聚丙烯腈溶液 35 958 面积比电容为224 mF/cm2 [26]
聚己内酯溶液 2 1 600 [27]
[1] NOVOSELOV K S, GEIM A K, MOROZOV S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696):666-669.
doi: 10.1126/science.1102896
[2] NOVOSELOV K S, JIANG D, SCHEDIN F, et al. Two-dimensional atomic crystals[J]. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(30):10451-10453.
[3] CASTELLANOS-GOMEZ A, VICARELLI L, PRADA E, et al. Isolation and characterization of few-layer black phosphorus[J]. 2D Materials, 2014, 1(2):025001.
doi: 10.1088/2053-1583/1/2/025001
[4] NAGUIB M, KURTOGLU M, PRESSER V, et al. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2[J]. Advanced Materials, 2011, 23(37):4248-4253.
doi: 10.1002/adma.201102306
[5] GUO Z, ZHOU J, SI C, et al. Flexible two-dimensional Tin+1Cn(n=1,2 and 3) and their functionalized MXenes predicted by density functional theories[J]. Physical Chemistry Chemical Physics, 2015, 17(23):15348-15354.
doi: 10.1039/C5CP00775E
[6] KAZEMI S A, WANG Y. Super strong 2D titanium carbide MXene-based materials: a theoretical prediction[J]. Journal of Physics: Condensed Matter, 2019.DOI: 10.1088/1361-648X/ab5bd8.
doi: 10.1088/1361-648X/ab5bd8
[7] ZHANG C J, MCKEON L, KREMER M P, et al. Additive-free MXene inks and direct printing of micro-supercapacitors[J]. Nature Communications, 2019, 10(1):1-9.
doi: 10.1038/s41467-018-07882-8
[8] LAKHE P, PREHN E M, HABIB T, et al. Process safety analysis for Ti3C2Tx MXene synjournal and processing[J]. Industrial & Engineering Chemistry Research, 2019, 58(4):1570-1579.
doi: 10.1021/acs.iecr.8b05416
[9] ZHANG C J, PINILLA S, MCEVOY N, et al. Oxidation stability of colloidal two-dimensional titanium carbides (MXenes)[J]. Chemistry of Materials, 2017, 29(11):4848-4856.
doi: 10.1021/acs.chemmater.7b00745
[10] SEREDYCH M, SHUCK C E, PINTO D, et al. High-temperature behavior, surface chemistry of carbide MXenes studied by thermal analysis[J]. Chemistry of Materials, 2019, 31(9):3324-3332.
doi: 10.1021/acs.chemmater.9b00397
[11] ZHAO M Q, REN C E, LING Z, et al. Flexible MXene/carbon nanotube composite paper with high volumetric capacitance[J]. Advanced Materials, 2015, 27(2):339-345.
doi: 10.1002/adma.v27.2
[12] LI H, HOU Y, WANG F, et al. Flexible all-solid-state supercapacitors with high volumetric capacitances boosted by solution processable MXene and electrochemically exfoliated graphene[J]. Advanced Energy Materials, 2017, 7(4):1601847.
doi: 10.1002/aenm.201601847
[13] BAO W, SU D, ZHANG W, et al. 3D Metal carbide@mesoporous carbon hybrid architecture as a new polysulfide reservoir for lithium-sulfur batteries[J]. Advanced Functional Materials, 2016, 26(47):8746-8756.
doi: 10.1002/adfm.v26.47
[14] ALHABEB M, MALESKI K, ANASORI B, et al. Guidelines for synjournal and processing of two-dimensional titanium carbide (Ti3C2Tx MXene)[J]. Chemistry of Materials, 2017, 29(18):7633-7644.
doi: 10.1021/acs.chemmater.7b02847
[15] LI Y B, SHAO H, LIN Z F, et al. A general lewis acidic etching route for preparing MXenes with enhanced electrochemical performance in non-aqueous electrolyte[J]. Nature Materials, 2020, 19(8):894.
doi: 10.1038/s41563-020-0657-0
[16] GHIDIU M, LUKATSKAYA M R, ZHAO M Q, et al. Conductive two-dimensional titanium carbide 'clay' with high volumetric capacitance[J]. Nature, 2014, 516(7529):78-81.
doi: 10.1038/nature13970
[17] HALIM J, LUKATSKAYA M R, COOK K M, et al. Transparent conductive two-dimensional titanium carbide epitaxial thin films[J]. Chemistry of Materials, 2014, 26(7):2374-2381.
doi: 10.1021/cm500641a
[18] UZUN S, SEYEDIN S, STOLTZFUS A L, et al. Knittable and washable multifunctional MXene-coated cellulose yarns[J]. Advanced Functional Materials, 2019, 29(45):1905015.
doi: 10.1002/adfm.v29.45
[19] LEVITT A, HEGH D, PHILLIPS P, et al. 3D knitted energy storage textiles using MXene-coated yarns[J]. Materials Today, 2020, 34:17-29.
doi: 10.1016/j.mattod.2020.02.005
[20] WANG Q W, ZHANG H B, LIU J, et al. Multifunctional and water-resistant MXene-decorated polyester textiles with outstanding electromagnetic interference shielding and joule heating performances[J]. Advanced Functional Materials, 2019, 29(7):1806819.
doi: 10.1002/adfm.v29.7
[21] CAO W T, MA C, MAO D S, et al. MXene-reinforced cellulose nanofibril inks for 3D-printed smart fibres and textiles[J]. Advanced Functional Materials, 2019, 29(51):1905898.
doi: 10.1002/adfm.v29.51
[22] SEYEDIN S, UZUN S, LEVITT A, et al. MXene composite and coaxial fibers with high stretchability and conductivity for wearable strain sensing textiles[J]. Advanced Functional Materials, 2020, 30(12):1910504.
doi: 10.1002/adfm.v30.12
[23] ZHANG J, UZUN S, SEYEDIN S, et al. Additive-free MXene liquid crystals and fibers[J]. ACS Central Science, 2020, 6(2):254-265.
doi: 10.1021/acscentsci.9b01217
[24] WANG Z, QIN S, SEYEDIN S, et al. High-performance biscrolled MXene/carbon nanotube yarn supercapacitors[J]. Small, 2018, 14(37):1802225.
doi: 10.1002/smll.v14.37
[25] YU C, GONG Y, CHEN R, et al. A solid-state fibriform supercapacitor boosted by host-guest hybridization between the carbon nanotube scaffold and MXene nanosheets[J]. Small, 2018, 14(29):1801203.
doi: 10.1002/smll.v14.29
[26] LEVITT A S, ALHABEB M, HATTER C B, et al. Electrospun MXene/carbon nanofibers as supercapacitor electrodes[J]. Journal of Materials Chemistry A, 2019, 7(1):269-277.
doi: 10.1039/C8TA09810G
[27] AWASTHI G P, MAHARJAN B, SHRESTHA S, et al. Synjournal, characterizations, and biocompatibility evaluation of polycaprolactone-MXene electrospun fibers[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 586:124282.
doi: 10.1016/j.colsurfa.2019.124282
[28] NAGUIB M, MOCHALIN V N, BARSOUM M W, et al. 25th anniversary article: MXenes: a new family of two-dimensional materials[J]. Advanced Materials, 2014, 26(7):992-1005.
doi: 10.1002/adma.201304138
[29] WANG L H, TIAN M W, ZHANG Y Y, et al. Helical core-sheath elastic yarn-based dual strain/humidity sensors with MXene sensing layer[J]. Journal of Materials Science, 2020, 55(14):6187-6194.
doi: 10.1007/s10853-020-04425-9
[30] LIU L X, CHEN W, ZHANG H B, et al. Flexible and multifunctional silk textiles with biomimetic leaf-like MXene/silver nanowire nanostructures for electromagnetic interference shielding, humidity monitoring, and self-derived hydrophobicity[J]. Advanced Functional Materials, 2019, 29(44):1905197.
doi: 10.1002/adfm.v29.44
[31] YAN J F, MA Y A, ZHANG C K, et al. Polypyrrole-MXene coated textile-based flexible energy storage device[J]. RSC Advances, 2018, 8(69):39742-39748.
doi: 10.1039/C8RA08403C
[32] XUE J J, WU T, DAI Y Q, et al. Electrospinning and electrospun nanofibers: methods, materials, and applications[J]. Chemical Reviews, 2019, 119(8):5298-5415.
doi: 10.1021/acs.chemrev.8b00593
[33] AGARWAL S, WENDORFF J H, GREINER A. Use of electrospinning technique for biomedical applica-tions[J]. Polymer, 2008, 49(26):5603-5621.
doi: 10.1016/j.polymer.2008.09.014
[34] TIWARI A P, JOSHI M K, LEE J, et al. Heterogeneous electrospun polycaprolactone/polyethylene glycol membranes with improved wettability, biocompatibility, and mineralization[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2017, 520:105-113.
doi: 10.1016/j.colsurfa.2017.01.054
[35] PANT H R, NEUPANE M P, PANT B, et al. Fabrication of highly porous poly (epsilon-caprolactone) fibers for novel tissue scaffold via water-bath electrospinning[J]. Colloids and Surfaces B:Biointerfaces, 2011, 88(2):587-592.
doi: 10.1016/j.colsurfb.2011.07.045
[36] RANGANATHAN S, BALAGANGADHARAN K, SELVAMURUGAN N. Chitosan and gelatin-based electrospun fibers for bone tissue engineering[J]. International Journal of Biological Macromolecules, 2019, 133:354-364.
doi: 10.1016/j.ijbiomac.2019.04.115
[37] RAVNIK M, ALEXANDER G P, YEOMANS J M, et al. Three-dimensional colloidal crystals in liquid crystalline blue phases[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(13):5188-5192.
[38] NAKAYAMA M, KAJIYAMA S, KUMAMOTO A, et al. Stimuli-responsive hydroxyapatite liquid crystal with macroscopically controllable ordering and magneto-optical functions[J]. Nature Communications, 2018, 9:568.
doi: 10.1038/s41467-018-02932-7
[39] DAS N C, LIU Y Y, YANG K K, et al. Single-walled carbon nanotube/poly(methyl methacrylate) composites for electromagnetic interference shielding[J]. Polymer Engineering and Science, 2009, 49(8):1627-1634.
doi: 10.1002/pen.21384
[40] HUANG X, DAI B, REN Y, et al. Preparation and study of electromagnetic interference shielding materials comprised of Ni-Co coated on web-like biocarbon nanofibers via electroless deposition[J]. Journal of Nanomaterials, 2015, 2015:320306.
[41] HEMANTH N, KANDASUBRAMANIAN B. Recent advances in 2D MXenes for enhanced cation intercalation in energy harvesting applications: a review[J]. Chemical Engineering Journal, 2019, 392:123678.
doi: 10.1016/j.cej.2019.123678
[42] TAN C L, CAO X H, WU X J, et al. Recent advances in ultrathin two-dimensional nanomaterials[J]. Chemical Reviews, 2017, 117(9):6225-6331.
doi: 10.1021/acs.chemrev.6b00558
[43] BHIMANAPATI G R, LIN Z, MEUNIER V, et al. Recent advances in two-dimensional materials beyond graphene[J]. ACS Nano, 2015, 9(12):11509-11539.
doi: 10.1021/acsnano.5b05556
[44] WANG H, FENG H B, LI J H. Graphene and graphene-like layered transition metal dichalcogenides in energy conversion and storage[J]. Small, 2014, 10(11):2165-2181.
doi: 10.1002/smll.201303711
[45] ZHANG C F, ANASORI B, SERAL-ASCASO A, et al. Transparent, flexible, and conductive 2D titanium carbide (MXene) films with high volumetric capacitance[J]. Advanced Materials, 2017, 29(36):1702678.
doi: 10.1002/adma.201702678
[46] ZHANG C, KREMER M P, SERAL-ASCASO A, et al. Stamping of flexible, coplanar micro-supercapacitors using MXene inks[J]. Advanced Functional Materials, 2018, 28(9):1705506.
doi: 10.1002/adfm.v28.9
[47] ANASORI B, LUKATSKAYA M R, GOGOTSI Y. 2D metal carbides and nitrides (MXenes) for energy storage[J]. Nature Reviews Materials, 2017, 2(2):16098.
doi: 10.1038/natrevmats.2016.98
[1] 方剑, 任松, 张传雄, 陈钱, 夏广波, 葛灿. 智能可穿戴纺织品用电活性纤维材料[J]. 纺织学报, 2021, 42(09): 1-9.
[2] 叶成伟, 汪屹, 徐岚. 钴基分级多孔复合碳材料的制备及其电化学性能[J]. 纺织学报, 2021, 42(08): 57-63.
[3] 闫涛, 潘志娟. 轻薄型取向碳纳米纤维膜的应变传感性能[J]. 纺织学报, 2021, 42(07): 62-68.
[4] 肖渊, 李红英, 李倩, 张威, 杨鹏程. 棉织物/聚二甲基硅氧烷复合介电层柔性压力传感器制备[J]. 纺织学报, 2021, 42(05): 79-83.
[5] 张林, 李至诚, 郑钦元, 董隽, 章寅. 基于静电纺丝的柔性各向异性应变传感器的制备及其性能[J]. 纺织学报, 2021, 42(05): 38-45.
[6] 张亦可, 贾凡, 桂澄, 晋蕊, 李戎. 碳纳米管/聚偏氟乙烯纳米纤维膜的制备及其压电性能[J]. 纺织学报, 2021, 42(03): 44-49.
[7] 孟灵灵, 魏取福, 严忠杰, 仲珍珍, 王小慧, 沈佳宇, 陈洪炜. 磁控溅射Ag/ZnO纳米薄膜涤纶织物的制备及其性能[J]. 纺织学报, 2021, 42(03): 143-148.
[8] 于佳, 辛斌杰, 卓婷婷, 周曦. 高导电性铜/聚吡咯涂层羊毛织物的制备与表征[J]. 纺织学报, 2021, 42(01): 112-117.
[9] 王赫, 王洪杰, 阮芳涛, 凤权. 静电纺聚丙烯腈/线性酚醛树脂碳纳米纤维电极的制备及其性能[J]. 纺织学报, 2021, 42(01): 22-29.
[10] 王霁龙, 刘岩, 景媛媛, 许庆丽, 钱祥宇, 张义红, 张坤. 纤维基可穿戴电子设备的研究进展[J]. 纺织学报, 2020, 41(12): 157-165.
[11] 张亦可, 贾凡, 桂澄, 晋蕊, 李戎. 聚偏氟乙烯/FeCl3复合纤维膜柔性传感器的制备及其性能[J]. 纺织学报, 2020, 41(12): 13-20.
[12] 王博, 凡力华, 原韵, 殷允杰, 王潮霞. 可拉伸聚吡咯/棉针织物的制备及其储电性能[J]. 纺织学报, 2020, 41(10): 101-106.
[13] 张恒宇, 张宪胜, 肖红, 施楣梧. 二维碳化物在柔性电磁吸波领域的研究进展[J]. 纺织学报, 2020, 41(03): 182-187.
[14] 贾高鹏, 宋小红, 李莹, 刘晓丹, 潘雪茹. 铜镍金属涂层机织物拉伸过程中电流的响应[J]. 纺织学报, 2019, 40(10): 68-72.
[15] 邹梨花, 徐珍珍, 孙妍妍, 王太冉, 邱夷平. 氧化石墨烯/聚苯胺功能膜对棉织物电磁屏蔽性能的影响[J]. 纺织学报, 2019, 40(08): 109-116.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!