纺织学报 ›› 2021, Vol. 42 ›› Issue (09): 10-16.doi: 10.13475/j.fzxb.20210203507
荣凯1,2, 樊威1,2(), 王琪1,2, 张聪1,2, 于洋1,2
RONG Kai1,2, FAN Wei1,2(), WANG Qi1,2, ZHANG Cong1,2, YU Yang1,2
摘要:
针对传统纤维难以满足当前智能可穿戴设备需求,现有复合纤维大都不能兼具导电性能好、力学性能优、储能特性强等问题,归纳总结了一种新型二维过渡金属碳/氮化合物(MXene)复合纤维在智能可穿戴领域中的研究进展。首先从纤维制备角度介绍了MXene复合纤维的制备方法,包括涂覆法、双辊法、静电纺丝法和湿法纺丝法等,并分析了各种方法的优劣;然后对制备的MXene复合纤维在现阶段电磁屏蔽、超级电容器、柔性传感器等领域的应用进行系统介绍;最后对MXene复合纤维在智能可穿戴领域的未来发展进行展望,为新一代导电性高、力学性能优异、高能量储存复合纤维的研究提供新的思路。
中图分类号:
[1] |
NOVOSELOV K S, GEIM A K, MOROZOV S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696):666-669.
doi: 10.1126/science.1102896 |
[2] | NOVOSELOV K S, JIANG D, SCHEDIN F, et al. Two-dimensional atomic crystals[J]. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(30):10451-10453. |
[3] |
CASTELLANOS-GOMEZ A, VICARELLI L, PRADA E, et al. Isolation and characterization of few-layer black phosphorus[J]. 2D Materials, 2014, 1(2):025001.
doi: 10.1088/2053-1583/1/2/025001 |
[4] |
NAGUIB M, KURTOGLU M, PRESSER V, et al. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2[J]. Advanced Materials, 2011, 23(37):4248-4253.
doi: 10.1002/adma.201102306 |
[5] |
GUO Z, ZHOU J, SI C, et al. Flexible two-dimensional Tin+1Cn(n=1,2 and 3) and their functionalized MXenes predicted by density functional theories[J]. Physical Chemistry Chemical Physics, 2015, 17(23):15348-15354.
doi: 10.1039/C5CP00775E |
[6] |
KAZEMI S A, WANG Y. Super strong 2D titanium carbide MXene-based materials: a theoretical prediction[J]. Journal of Physics: Condensed Matter, 2019.DOI: 10.1088/1361-648X/ab5bd8.
doi: 10.1088/1361-648X/ab5bd8 |
[7] |
ZHANG C J, MCKEON L, KREMER M P, et al. Additive-free MXene inks and direct printing of micro-supercapacitors[J]. Nature Communications, 2019, 10(1):1-9.
doi: 10.1038/s41467-018-07882-8 |
[8] |
LAKHE P, PREHN E M, HABIB T, et al. Process safety analysis for Ti3C2Tx MXene synjournal and processing[J]. Industrial & Engineering Chemistry Research, 2019, 58(4):1570-1579.
doi: 10.1021/acs.iecr.8b05416 |
[9] |
ZHANG C J, PINILLA S, MCEVOY N, et al. Oxidation stability of colloidal two-dimensional titanium carbides (MXenes)[J]. Chemistry of Materials, 2017, 29(11):4848-4856.
doi: 10.1021/acs.chemmater.7b00745 |
[10] |
SEREDYCH M, SHUCK C E, PINTO D, et al. High-temperature behavior, surface chemistry of carbide MXenes studied by thermal analysis[J]. Chemistry of Materials, 2019, 31(9):3324-3332.
doi: 10.1021/acs.chemmater.9b00397 |
[11] |
ZHAO M Q, REN C E, LING Z, et al. Flexible MXene/carbon nanotube composite paper with high volumetric capacitance[J]. Advanced Materials, 2015, 27(2):339-345.
doi: 10.1002/adma.v27.2 |
[12] |
LI H, HOU Y, WANG F, et al. Flexible all-solid-state supercapacitors with high volumetric capacitances boosted by solution processable MXene and electrochemically exfoliated graphene[J]. Advanced Energy Materials, 2017, 7(4):1601847.
doi: 10.1002/aenm.201601847 |
[13] |
BAO W, SU D, ZHANG W, et al. 3D Metal carbide@mesoporous carbon hybrid architecture as a new polysulfide reservoir for lithium-sulfur batteries[J]. Advanced Functional Materials, 2016, 26(47):8746-8756.
doi: 10.1002/adfm.v26.47 |
[14] |
ALHABEB M, MALESKI K, ANASORI B, et al. Guidelines for synjournal and processing of two-dimensional titanium carbide (Ti3C2Tx MXene)[J]. Chemistry of Materials, 2017, 29(18):7633-7644.
doi: 10.1021/acs.chemmater.7b02847 |
[15] |
LI Y B, SHAO H, LIN Z F, et al. A general lewis acidic etching route for preparing MXenes with enhanced electrochemical performance in non-aqueous electrolyte[J]. Nature Materials, 2020, 19(8):894.
doi: 10.1038/s41563-020-0657-0 |
[16] |
GHIDIU M, LUKATSKAYA M R, ZHAO M Q, et al. Conductive two-dimensional titanium carbide 'clay' with high volumetric capacitance[J]. Nature, 2014, 516(7529):78-81.
doi: 10.1038/nature13970 |
[17] |
HALIM J, LUKATSKAYA M R, COOK K M, et al. Transparent conductive two-dimensional titanium carbide epitaxial thin films[J]. Chemistry of Materials, 2014, 26(7):2374-2381.
doi: 10.1021/cm500641a |
[18] |
UZUN S, SEYEDIN S, STOLTZFUS A L, et al. Knittable and washable multifunctional MXene-coated cellulose yarns[J]. Advanced Functional Materials, 2019, 29(45):1905015.
doi: 10.1002/adfm.v29.45 |
[19] |
LEVITT A, HEGH D, PHILLIPS P, et al. 3D knitted energy storage textiles using MXene-coated yarns[J]. Materials Today, 2020, 34:17-29.
doi: 10.1016/j.mattod.2020.02.005 |
[20] |
WANG Q W, ZHANG H B, LIU J, et al. Multifunctional and water-resistant MXene-decorated polyester textiles with outstanding electromagnetic interference shielding and joule heating performances[J]. Advanced Functional Materials, 2019, 29(7):1806819.
doi: 10.1002/adfm.v29.7 |
[21] |
CAO W T, MA C, MAO D S, et al. MXene-reinforced cellulose nanofibril inks for 3D-printed smart fibres and textiles[J]. Advanced Functional Materials, 2019, 29(51):1905898.
doi: 10.1002/adfm.v29.51 |
[22] |
SEYEDIN S, UZUN S, LEVITT A, et al. MXene composite and coaxial fibers with high stretchability and conductivity for wearable strain sensing textiles[J]. Advanced Functional Materials, 2020, 30(12):1910504.
doi: 10.1002/adfm.v30.12 |
[23] |
ZHANG J, UZUN S, SEYEDIN S, et al. Additive-free MXene liquid crystals and fibers[J]. ACS Central Science, 2020, 6(2):254-265.
doi: 10.1021/acscentsci.9b01217 |
[24] |
WANG Z, QIN S, SEYEDIN S, et al. High-performance biscrolled MXene/carbon nanotube yarn supercapacitors[J]. Small, 2018, 14(37):1802225.
doi: 10.1002/smll.v14.37 |
[25] |
YU C, GONG Y, CHEN R, et al. A solid-state fibriform supercapacitor boosted by host-guest hybridization between the carbon nanotube scaffold and MXene nanosheets[J]. Small, 2018, 14(29):1801203.
doi: 10.1002/smll.v14.29 |
[26] |
LEVITT A S, ALHABEB M, HATTER C B, et al. Electrospun MXene/carbon nanofibers as supercapacitor electrodes[J]. Journal of Materials Chemistry A, 2019, 7(1):269-277.
doi: 10.1039/C8TA09810G |
[27] |
AWASTHI G P, MAHARJAN B, SHRESTHA S, et al. Synjournal, characterizations, and biocompatibility evaluation of polycaprolactone-MXene electrospun fibers[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 586:124282.
doi: 10.1016/j.colsurfa.2019.124282 |
[28] |
NAGUIB M, MOCHALIN V N, BARSOUM M W, et al. 25th anniversary article: MXenes: a new family of two-dimensional materials[J]. Advanced Materials, 2014, 26(7):992-1005.
doi: 10.1002/adma.201304138 |
[29] |
WANG L H, TIAN M W, ZHANG Y Y, et al. Helical core-sheath elastic yarn-based dual strain/humidity sensors with MXene sensing layer[J]. Journal of Materials Science, 2020, 55(14):6187-6194.
doi: 10.1007/s10853-020-04425-9 |
[30] |
LIU L X, CHEN W, ZHANG H B, et al. Flexible and multifunctional silk textiles with biomimetic leaf-like MXene/silver nanowire nanostructures for electromagnetic interference shielding, humidity monitoring, and self-derived hydrophobicity[J]. Advanced Functional Materials, 2019, 29(44):1905197.
doi: 10.1002/adfm.v29.44 |
[31] |
YAN J F, MA Y A, ZHANG C K, et al. Polypyrrole-MXene coated textile-based flexible energy storage device[J]. RSC Advances, 2018, 8(69):39742-39748.
doi: 10.1039/C8RA08403C |
[32] |
XUE J J, WU T, DAI Y Q, et al. Electrospinning and electrospun nanofibers: methods, materials, and applications[J]. Chemical Reviews, 2019, 119(8):5298-5415.
doi: 10.1021/acs.chemrev.8b00593 |
[33] |
AGARWAL S, WENDORFF J H, GREINER A. Use of electrospinning technique for biomedical applica-tions[J]. Polymer, 2008, 49(26):5603-5621.
doi: 10.1016/j.polymer.2008.09.014 |
[34] |
TIWARI A P, JOSHI M K, LEE J, et al. Heterogeneous electrospun polycaprolactone/polyethylene glycol membranes with improved wettability, biocompatibility, and mineralization[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2017, 520:105-113.
doi: 10.1016/j.colsurfa.2017.01.054 |
[35] |
PANT H R, NEUPANE M P, PANT B, et al. Fabrication of highly porous poly (epsilon-caprolactone) fibers for novel tissue scaffold via water-bath electrospinning[J]. Colloids and Surfaces B:Biointerfaces, 2011, 88(2):587-592.
doi: 10.1016/j.colsurfb.2011.07.045 |
[36] |
RANGANATHAN S, BALAGANGADHARAN K, SELVAMURUGAN N. Chitosan and gelatin-based electrospun fibers for bone tissue engineering[J]. International Journal of Biological Macromolecules, 2019, 133:354-364.
doi: 10.1016/j.ijbiomac.2019.04.115 |
[37] | RAVNIK M, ALEXANDER G P, YEOMANS J M, et al. Three-dimensional colloidal crystals in liquid crystalline blue phases[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(13):5188-5192. |
[38] |
NAKAYAMA M, KAJIYAMA S, KUMAMOTO A, et al. Stimuli-responsive hydroxyapatite liquid crystal with macroscopically controllable ordering and magneto-optical functions[J]. Nature Communications, 2018, 9:568.
doi: 10.1038/s41467-018-02932-7 |
[39] |
DAS N C, LIU Y Y, YANG K K, et al. Single-walled carbon nanotube/poly(methyl methacrylate) composites for electromagnetic interference shielding[J]. Polymer Engineering and Science, 2009, 49(8):1627-1634.
doi: 10.1002/pen.21384 |
[40] | HUANG X, DAI B, REN Y, et al. Preparation and study of electromagnetic interference shielding materials comprised of Ni-Co coated on web-like biocarbon nanofibers via electroless deposition[J]. Journal of Nanomaterials, 2015, 2015:320306. |
[41] |
HEMANTH N, KANDASUBRAMANIAN B. Recent advances in 2D MXenes for enhanced cation intercalation in energy harvesting applications: a review[J]. Chemical Engineering Journal, 2019, 392:123678.
doi: 10.1016/j.cej.2019.123678 |
[42] |
TAN C L, CAO X H, WU X J, et al. Recent advances in ultrathin two-dimensional nanomaterials[J]. Chemical Reviews, 2017, 117(9):6225-6331.
doi: 10.1021/acs.chemrev.6b00558 |
[43] |
BHIMANAPATI G R, LIN Z, MEUNIER V, et al. Recent advances in two-dimensional materials beyond graphene[J]. ACS Nano, 2015, 9(12):11509-11539.
doi: 10.1021/acsnano.5b05556 |
[44] |
WANG H, FENG H B, LI J H. Graphene and graphene-like layered transition metal dichalcogenides in energy conversion and storage[J]. Small, 2014, 10(11):2165-2181.
doi: 10.1002/smll.201303711 |
[45] |
ZHANG C F, ANASORI B, SERAL-ASCASO A, et al. Transparent, flexible, and conductive 2D titanium carbide (MXene) films with high volumetric capacitance[J]. Advanced Materials, 2017, 29(36):1702678.
doi: 10.1002/adma.201702678 |
[46] |
ZHANG C, KREMER M P, SERAL-ASCASO A, et al. Stamping of flexible, coplanar micro-supercapacitors using MXene inks[J]. Advanced Functional Materials, 2018, 28(9):1705506.
doi: 10.1002/adfm.v28.9 |
[47] |
ANASORI B, LUKATSKAYA M R, GOGOTSI Y. 2D metal carbides and nitrides (MXenes) for energy storage[J]. Nature Reviews Materials, 2017, 2(2):16098.
doi: 10.1038/natrevmats.2016.98 |
[1] | 方剑, 任松, 张传雄, 陈钱, 夏广波, 葛灿. 智能可穿戴纺织品用电活性纤维材料[J]. 纺织学报, 2021, 42(09): 1-9. |
[2] | 叶成伟, 汪屹, 徐岚. 钴基分级多孔复合碳材料的制备及其电化学性能[J]. 纺织学报, 2021, 42(08): 57-63. |
[3] | 闫涛, 潘志娟. 轻薄型取向碳纳米纤维膜的应变传感性能[J]. 纺织学报, 2021, 42(07): 62-68. |
[4] | 肖渊, 李红英, 李倩, 张威, 杨鹏程. 棉织物/聚二甲基硅氧烷复合介电层柔性压力传感器制备[J]. 纺织学报, 2021, 42(05): 79-83. |
[5] | 张林, 李至诚, 郑钦元, 董隽, 章寅. 基于静电纺丝的柔性各向异性应变传感器的制备及其性能[J]. 纺织学报, 2021, 42(05): 38-45. |
[6] | 张亦可, 贾凡, 桂澄, 晋蕊, 李戎. 碳纳米管/聚偏氟乙烯纳米纤维膜的制备及其压电性能[J]. 纺织学报, 2021, 42(03): 44-49. |
[7] | 孟灵灵, 魏取福, 严忠杰, 仲珍珍, 王小慧, 沈佳宇, 陈洪炜. 磁控溅射Ag/ZnO纳米薄膜涤纶织物的制备及其性能[J]. 纺织学报, 2021, 42(03): 143-148. |
[8] | 于佳, 辛斌杰, 卓婷婷, 周曦. 高导电性铜/聚吡咯涂层羊毛织物的制备与表征[J]. 纺织学报, 2021, 42(01): 112-117. |
[9] | 王赫, 王洪杰, 阮芳涛, 凤权. 静电纺聚丙烯腈/线性酚醛树脂碳纳米纤维电极的制备及其性能[J]. 纺织学报, 2021, 42(01): 22-29. |
[10] | 王霁龙, 刘岩, 景媛媛, 许庆丽, 钱祥宇, 张义红, 张坤. 纤维基可穿戴电子设备的研究进展[J]. 纺织学报, 2020, 41(12): 157-165. |
[11] | 张亦可, 贾凡, 桂澄, 晋蕊, 李戎. 聚偏氟乙烯/FeCl3复合纤维膜柔性传感器的制备及其性能[J]. 纺织学报, 2020, 41(12): 13-20. |
[12] | 王博, 凡力华, 原韵, 殷允杰, 王潮霞. 可拉伸聚吡咯/棉针织物的制备及其储电性能[J]. 纺织学报, 2020, 41(10): 101-106. |
[13] | 张恒宇, 张宪胜, 肖红, 施楣梧. 二维碳化物在柔性电磁吸波领域的研究进展[J]. 纺织学报, 2020, 41(03): 182-187. |
[14] | 贾高鹏, 宋小红, 李莹, 刘晓丹, 潘雪茹. 铜镍金属涂层机织物拉伸过程中电流的响应[J]. 纺织学报, 2019, 40(10): 68-72. |
[15] | 邹梨花, 徐珍珍, 孙妍妍, 王太冉, 邱夷平. 氧化石墨烯/聚苯胺功能膜对棉织物电磁屏蔽性能的影响[J]. 纺织学报, 2019, 40(08): 109-116. |
|