纺织学报 ›› 2022, Vol. 43 ›› Issue (05): 136-142.doi: 10.13475/j.fzxb.20210204807

• 染整与化学品 • 上一篇    下一篇

角质酶在涤纶织物表面改性中的应用

王艳萍1, 陈晓倩2, 夏伟2, 傅佳佳1(), 高卫东1, 王鸿博1, ARTUR Cavaco-Paulo3   

  1. 1.江南大学 江苏省功能纺织品工程技术研究中心, 江苏 无锡 214122
    2.江南大学 食品科学与技术国家重点实验室, 江苏 无锡 214122
    3.米尼奥大学 生物工程中心, 葡萄牙 布拉加 4710-057
  • 收稿日期:2021-02-22 修回日期:2021-08-10 出版日期:2022-05-15 发布日期:2022-05-30
  • 通讯作者: 傅佳佳
  • 作者简介:王艳萍(1994—),女,硕士生。主要研究方向为涤纶织物酶法改性技术。
  • 基金资助:
    国家重点研发计划项目(2019YFA0706900);江苏省政策引导类计划项目(BZ2020010)

Application of cutinase in polyester surface modification

WANG Yanping1, CHEN Xiaoqian2, XIA Wei2, FU Jiajia1(), GAO Weidong1, WANG Hongbo1, ARTUR Cavaco-Paulo3   

  1. 1. Jiangsu Engineering Technology Research Center of Function Textiles, Jiangnan University, Wuxi, Jiangsu 214122, China
    2. State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
    3. Centre of Biological Engineering, University of Minho, Braga 4710-057, Portugal
  • Received:2021-02-22 Revised:2021-08-10 Published:2022-05-15 Online:2022-05-30
  • Contact: FU Jiajia

摘要:

针对涤纶织物亲水性较差的问题,采用特异腐质霉(H.insolens)来源的角质酶对其表面进行改性。通过单因素变量试验对反应残液进行紫外光吸光度测试,确定角质酶处理涤纶织物的优化工艺条件:角质酶用量为100 U/mL,时间为72 h,pH值为8.5,温度为60 ℃。在此条件下,加入表面活性剂Trition X-100(为0.1%)能显著提高角质酶催化水解涤纶织物的产物释放量。测定了反应残液中产物的种类、处理前后织物的亲水性和染色性能,并对涤纶织物表面形貌以及表面化学成分进行表征,分析涤纶的酶法改性机制。结果表明:角质酶水解涤纶产物主要是单(对苯二甲酸-2-羟基乙酯)(MHET)和对苯二甲酸(TPA);角质酶处理后涤纶织物的接触角由93.4°降至83.1°;处理后织物的亚甲基蓝染色深度值显著增加。

关键词: 角质酶, 涤纶织物, 水解, 对苯二甲酸, 亲水性能, 表面改性

Abstract:

Polyester fabrics present poor hydrophilic property. This research uses cutinase from H.insolens to modify the surface of polyester fabrics. The UV absorbance of the residual reaction liquid was evaluated and the treatment condition was determined based on the single-factor test. A suitable treatment condition for polyester fabrics was achieved under the cutinase concentration of 100 U/mL at 60 ℃ and pH 8.5 for 72 h. Under these conditions, Trition X-100 surfactant, with a dosage of 0.1%, was added to the reaction system, leading to significantly increase in the yield of cutinase-catalyzed hydrolysis of polyester fabrics. The type of product in the reaction residue, the hydrophilicity and dyeing properties of the treated and untreated fabric were measured, and the surface morphology and surface chemical composition of polyester were characterized. The mechanism of enzymatic modification of polyester was proposed. The results show that two main products yield from cutinase hydrolysis of polyester, namely mono-terephthalic acid 2-hydroxyethyl ester (MHET) and terephthalic acid (TPA). The surface of the polyester fabric became rough and the contact angle of polyester fabric was reduced from 93.4° to 83.1°. The dyeing depth value of the methylene blue dyed polyester fabric was significantly increased after the cutinase treatment, and the strength of C=O and C—O bands in the infrared spectrum corresponding to ester bond of cutinase-treated polyester fabric was decreased. It is indicated that the cutinase is able to catalyze the hydrolysis of ester bond on the surface of the polyester fabric, thus effectively improving the hydrophilicity of the polyester fabric.

Key words: cutinase, polyester fabric, hydrolysis, terephthalic acid, wettability, surface modification

中图分类号: 

  • TS156

图1

TPA质量浓度与吸光度标准曲线"

图2

角质酶用量对TPA及其衍生物释放量的影响"

图3

反应时间对TPA及其衍生物释放量的影响"

图4

反应pH值对TPA及其衍生物释放量的影响"

图5

反应温度对TPA及其衍生物释放量的影响"

图6

酶处理涤纶织物反应残液高效液相色谱图"

图7

角质酶处理前后涤纶的扫描电镜照片(×10 000)"

图8

角质酶处理前后涤纶织物的红外光谱图"

图9

角质酶处理前后涤纶织物的K/S值曲线"

图10

角质酶处理前后涤纶织物接触角变化"

[1] 王小花, 洪枫, 陆大年, 等. 脂肪酶在纺织工业中的应用[J]. 毛纺科技, 2005, 33(6): 22-24.
WANG Xiaohua, HONG Feng, LU Danian, et al. Application of lipase in textile industry[J]. Wool Textile Journal, 2005, 33(6): 22-24.
[2] 李旭明, 师利芬, 钱志华, 等. 脂肪酶处理对涤纶织物亲水性能的改善[J]. 纺织学报, 2012, 33(4):91-94.
LI Xuming, SHI Lifen, QIAN Zhihua, et al. Improvement of wettability of PET fabrics treated bylipase[J]. Journal of Textile Research, 2012, 33(4):91-94.
[3] REHMAN A, RAZA Z A, MASOOD R. Optimization of lipase activity under various chemo-physical conditions for hydrolysis of polyester fabric using multiple statistical approaches[J]. Journal of The Textile Institute, 2019(6): 826-834.
[4] 代国亮, 肖红, 施楣梧. 涤纶表面亲水改性研究进展及其发展方向[J]. 纺织学报, 2015, 36(8): 156-164.
DAI Guoliang, XIAO Hong, SHI Meiwu. Research progress and development direction of hydrophilic modification of polyester surface[J]. Journal of Textile Research, 2015, 36(8): 156-164.
[5] 冯冠晨, 胡柳. 脂肪酶的催化性能及其在涤纶改性中的应用[J]. 染整技术, 2017, 39(4): 37-43.
FENG Guanchen, HU Liu. The catalytic performance of lipase and its application in polyester modification[J]. Textile Dyeing and Finishing Journal, 2017, 39(4): 37-43.
[6] 王新, 王进美, 周娅楠. 涤纶表面亲水改性研究进展[J]. 合成纤维, 2021, 50(7): 27-30.
WANG Xin, WANG Jinmei, ZHOU Ya'nan. Research progress on hydrophilic modification of polyester surface[J]. Synthetic Fiber in China, 2021, 50(7): 27-30.
[7] HARSHITA C. Environment friendly technologies of biochemical and physical hydrolysis for polyester modification: a comparative study[J]. Man-made Textiles in India, 2018, 46(1):10-18.
[8] WU J, CAI G, LIU J, et al. Eco-friendly surface modification on polyester fabrics by esterase treatment[J]. Applied Surface Science, 2014, 295: 150-157.
doi: 10.1016/j.apsusc.2014.01.019
[9] 张欢, 闫俊, 王晓武, 等. 低温等离子体在涤纶表面改性中的应用[J]. 纺织学报, 2019, 40(7):103-107.
ZHANG Huan, YAN Jun, WANG Xiaowu, et al. Application of low temperature plasma in surface modification of polyester[J]. Journal of Textile Research, 2019, 40(7):103-107.
[10] GAO A. Hydrophilic modification of polyester fabric by synergetic effect of biological enzymolysis and non-ionic surfactant, and applications in cleaner production[J]. Journal of Cleaner Production, 2017(164): 277-287.
[11] DONELLI I, FREDDI G, NIERSTRASZ V A, et al. Surface structure and properties of poly(ethylenetereph-thalate)hydrolyzed by alkali and cutinase[J]. Polymer Degradation and Stability, 2010, 95(9):1542-1550.
doi: 10.1016/j.polymdegradstab.2010.06.011
[12] MARIA K, SOZON V. Surface modification of poly(ethylene terephthalate) (PET) fibers by acutinase from Fusariumoxysporum[J]. Process Biochemistry, 2015:1359-5113.
[13] CARNIEL A, JOSE Nicomedes Junior. Lipase from Candida antarctica (CALB) and cutinase from Humicolainsolens act synergistically for PET hydrolysis to terephthalic acid[J]. Process Biochemistry, 2017, 59:84-90.
doi: 10.1016/j.procbio.2016.07.023
[14] KARACA B, DEMIR A, ÖZDOAĞAN E, et al. Environmentally benign alternatives: plasma and enzymes to improve moisture management properties of knitted PET fabrics[J]. Fibers & Polymers, 2010, 11(7):1003-1009.
[15] 张瑶, 陈晟, 吴丹, 等. 重组角质酶的发酵制备及其对涤纶纤维的表面改性[J]. 生物工程学报, 2011, 27(7):1057-1064.
ZHANG Yao, CHEN Sheng, WU Dan, et al. Fermentation preparation of recombinant cutinase and its surface modification on polyester fiber[J]. Journal of Bioengineering, 2011, 27(7):1057-1064.
[16] 杨正富. 精对苯二甲酸排放污水中对苯二甲酸的测定[J]. 工业水处理, 2002, 22(2):38-39.
YANG Zhengfu. Determination of terephthalic acid in wastewater discharged by refined terephthalic acid[J]. Industrial Water Treatment, 2002, 22(2):38-39.
[1] 薛宝霞, 史依然, 张凤, 秦瑞红, 牛梅. 无卤氧化铁改性涤纶阻燃织物的制备及其性能[J]. 纺织学报, 2022, 43(05): 130-135.
[2] 雷彩虹, 俞林双, 朱海霖, 郑涛, 陈建勇. 不同水解方式下蚕丝丝素蛋白材料的止血性能[J]. 纺织学报, 2022, 43(04): 15-19.
[3] 何杨, 张瑞萍, 何勇, 范爱民. 激光改性涤纶织物的分散染料染色性能[J]. 纺织学报, 2022, 43(04): 102-109.
[4] 何颖婷, 李敏, 王瑞丰, 王春霞, 付少海. 涤纶织物的连续式轧染工艺[J]. 纺织学报, 2022, 43(03): 110-115.
[5] 徐晓彤, 江振林, 郑钦超, 朱科宇, 王朝生, 柯福佑. 导热结构对聚对苯二甲酸乙二醇酯非等温结晶行为的影响[J]. 纺织学报, 2022, 43(03): 44-49.
[6] 王锐, 刘彦麟, 刘蕴钰, 顾伟文, 刘紫灵, 魏建斐. 以聚对苯二甲酸乙二醇酯为前驱体的碳点制备及其应用[J]. 纺织学报, 2022, 43(02): 10-18.
[7] 史晟, 王彦, 李飞, 唐建东, 高翔宇, 侯文生, 郭红, 王淑花, 姬佳奇. 草酸稀溶液高效分离废旧聚酯/棉混纺织物[J]. 纺织学报, 2022, 43(02): 140-148.
[8] 陈咏, 乌婧, 王朝生, 潘小虎, 李乃祥, 戴钧明, 王华平. 生物可降解聚己二酸-对苯二甲酸丁二醇酯纤维的制备及其环境降解性能[J]. 纺织学报, 2022, 43(02): 37-43.
[9] 谢爱玲, 乐昱含, 艾馨, 王亚辉, 王义容, 陈新彭, 陈国强, 邢铁玲. 茶多酚改性超疏水涤纶织物制备及其在油水分离中的应用[J]. 纺织学报, 2022, 43(02): 162-170.
[10] 杨腾祥, 申国栋, 钱利江, 胡华军, 毛雪, 孙润军. 外电场极化银-钛酸钡/涤纶织物制备及其光催化性能[J]. 纺织学报, 2022, 43(02): 189-195.
[11] 朱兰芳, 白洁, 周吟澄, 侯成伟. 超声波处理对涤纶织物聚氨酯涂层中4,4'-二氨基二苯甲烷的影响[J]. 纺织学报, 2021, 42(11): 124-128.
[12] 普丹丹, 傅雅琴. 涤纶织物/聚氯乙烯-中空微珠复合材料的制备及其隔声性能[J]. 纺织学报, 2021, 42(11): 77-83.
[13] 陈香香, 吴婷, 周伟涛, 孙洋洋, 杜姗, 张晓莉. 双氧水/抗坏血酸引发甲基丙烯酸甲酯接枝改性锦纶6织物及其性能[J]. 纺织学报, 2021, 42(09): 131-136.
[14] 于金超, 姬洪, 陈康, 甘宇. 聚醚酯/聚对苯二甲酸丁二醇酯并列复合纤维的制备及其性能[J]. 纺织学报, 2021, 42(04): 42-47.
[15] 王少博, 肖阳, 黄鑫, 李增贝. 生物基聚对苯二甲酸丙二醇酯纤维制备技术的研究进展[J]. 纺织学报, 2021, 42(04): 16-25.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!