纺织学报 ›› 2022, Vol. 43 ›› Issue (05): 185-194.doi: 10.13475/j.fzxb.20210301910

• 综合述评 • 上一篇    下一篇

纺织基柔性染料敏化太阳能电池的研究进展

韩宜君1, 许君1(), 畅琪琪1, 张诚2,3   

  1. 1.天津工业大学 纺织科学与工程学院, 天津 300387
    2.天津工业大学 电子与信息工程学院, 天津 300387
    3.天津市光电检测技术与系统重点实验室, 天津 300387
  • 收稿日期:2021-03-04 修回日期:2021-09-08 出版日期:2022-05-15 发布日期:2022-05-30
  • 通讯作者: 许君
  • 作者简介:韩宜君(1996—),男,硕士生。主要研究方向为纺织基柔性染料敏化太阳能电池。
  • 基金资助:
    天津市“项目+团队”重点培养专项项目(XB202007);天津市重点研发计划科技支撑重点项目(19YFZCSY00180);天津市科技军民融合重大专项项目(18ZXJMTG00260)

Research progress in textile-based flexible dye-sensitized solar cells

HAN Yijun1, XU Jun1(), CHANG Qiqi1, ZHANG Cheng2,3   

  1. 1. School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
    2. School of Electronic and Information Engineering, Tiangong University, Tianjin 300387, China
    3. Tianjin Key Laboratory of Optoelectronic Detection Technology and System, Tianjin 300387, China
  • Received:2021-03-04 Revised:2021-09-08 Published:2022-05-15 Online:2022-05-30
  • Contact: XU Jun

摘要:

柔性染料敏化太阳能电池可为可穿戴设备解决供电问题并实现服装一体化,同时能减少能源消耗。为全面探究纺织基柔性染料敏化太阳能电池在纺织领域的应用前景,首先简述了染料敏化太阳能电池的发展现状、主要组成结构、工作机制和性能评价方法,重点介绍了柔性纤维状电池与纺织基底平面电池的研究进展;其次,通过分析电极制备与电池组装方式的特点,指出在当前纺织领域尚未解决的太阳能电池问题,同时总结了纺织基柔性染料敏化太阳能电池电解质与敏化染料的研究进展;最后指出电池电极、染料以及电解质的发展方向,并对纺织基柔性染料敏化太阳能电池的发展提出展望。

关键词: 染料敏化太阳能电池, 纺织基, 电极材料, 织物涂覆, 纤维

Abstract:

Solar energy is one of the effective solutions for the energy problem. Flexible solar cells can solve the power supply problem for wearable devices, and at the same time can facilitate the integration with clothing. In order to comprehensively explore the application prospects of textile-based flexible dye-sensitized solar cells, the development status, composition structure, working mechanism and performance evaluation of dye-sensitized solar cells were reviewed, focusing on the research results of flexible fibrous batteries and textile-based planar batteries, and on analysis of the characteristics of electrode preparation and battery assembly methods. The review also pointed out the unresolved problems in the textile field, and also summarized the development process in textile-based flexible dye-sensitized solar cell electrolytes and sensitizing dyes. It is concluded that the prospect of the development of textile-based flexible dye-sensitized solar cells was put forward.

Key words: dye-sensitized solar cells, textile-based, electrode material, fabric coating, fiber

中图分类号: 

  • TM914.4

图1

正面、背面透光型DSSCs结构示意图 注:HOMO指最高占据分子轨道; LUMO指最低未占分子轨道。"

图2

纤维状DSSCs结构示意图"

图3

“TiO2~I-/ I 3 -~Pt”型DSSCs以及DSSCs工作原理、电子转移过程示意图 注:FTO为导电玻璃;ECB为导带的电势;LUMO为最低未占分子轨道;HOMO为最高占据分子轨道。"

表1

柔性纤维状染料敏化太阳能电池的光伏参数"

电池形态 电池材料组成 电极材料
制备方法
短路电流/
(mA·cm-2)
开路电
压/V
影响因
F
光电转化
效率/%
参考
文献
线状 钛丝/TiO2/N719/I-- I 3 -/铂丝 涂覆法 11.06 0.734 0.672 5.41 [13]
碳纳米管丝/TiO2/N719/I-- I 3 -/碳纳米管丝 化学浴沉积法 7.6 [15]
碳纳米管丝/N719/I-- I 3 -/碳纳米管/聚偏氟乙烯丝 化学气相沉积法 9.84 0.69 0.57 3.90 [18]
碳纳米管丝/TiO2/N719/I-- I 3 -/碳纳米管丝 涂覆法 2.94 [19]
网状 钛丝/TiO2/N719/I-- I 3 -/多壁碳纳米管丝 化学气相沉积法 16.0 0.71 0.61 7.13 [20]
缎纹网状 不锈钢丝/ZnO/N719/固体电解质/Pt/不锈钢丝 水热合成法 20.2 0.45 0.28 2.57 [17]

表2

柔性织物基底染料敏化太阳能电池的光伏参数"

电池形态 电池材料组成 电极材料
制备方法
短路电流/
(mA·cm-2)
开路电
压/V
影响因
子FF
光电转化
效率/%
参考
文献
全柔平面 玻璃纤维织物/PA层/Ti/TiO2/染料/电解质/聚萘二甲酸乙二醇酯/Pt/ITO 丝网印刷高温烧结 5.7 0.71 0.541 1.8 [24]
机织涤纶/棉(65/35)面料/导电银浆/Ruthenizer 535-bisTBA染料敏化剂/I-- I 3 -/石墨/ITO 丝网印刷低温工艺 9.6 0.67 0.50 3.24 [27]
玻璃纤维织物/导电银浆/TiO2/Ruthenizer 535-bisTBA染料敏化剂/I-- I 3 -/石墨/ITO 丝网印刷低温工艺 10.24 0.73 0.54 4.04 [27]
镀锡铜丝制成的金属微丝纺织品/TiO2/N3/I-- I 3 -/Pt/聚乙烯薄膜 涂覆法高温烧结 0.84 0.41 0.57 0.20 [28]
不锈钢(SUS304)金属织物/TiO2/N719/I-- I 3 -/Pt/活性碳粉/不锈钢金属网 丝网印刷热处理 2.63 [29]
不锈钢(SUS304)金属织物/TiO2/N719/I-- I 3 -/Pt/活性碳粉/不锈钢金属网 浮动印刷热处理 6.32 0.792 0.67 4.16 [30]
304不锈钢网/TiO2/N719/ I-- I 3 -/Pt/不锈钢网/丝绸 电镀沉积 19.70 0.69 0.43 5.8 [31]
半柔平面 标准涤纶/棉(65/35)织物/导电银浆/TiO2/N719/I-- I 3 -/Pt/FTO 丝网印刷低温工艺 36.56 0.3 0.25 2.78 [26]
纸质基材/Ni/ZnO/N719/I-- I 3 -/Pt/FTO 刮涂法 6.70 0.56 0.33 1.21 [33]
FTO/TiO2/N719/I-- I 3 -/氧化石墨烯/棉织物 涂覆法 9.08 0.64 0.429 7 2.52 [32]
FTO/TiO2/D719/I-- I 3 -/多壁碳纳米管涂层/涤纶织物 流延法空气干燥 11.92 0.688 0.693 9 5.69 [33]
FTO/TiO2/N719/I-- I 3 -/活性炭掺杂多壁碳纳米管/涤纶机织物 刮涂法空气干燥 12.03 0.766 0.790 3 7.29 [34]
FTO/TiO2/N719/凝胶电解质/多壁碳纳米管/介孔活性炭/棉织物 刮涂法 12.3 0.72 0.685 6.06 [35]
FTO/TiO2/N719/凝胶电解质/多壁碳纳米管/介孔活性炭/涤纶织物 刮涂法 12.4 0.72 0.701 9 6.26 [35]
FTO/TiO2/N719/凝胶电解质/多壁碳纳米管/介孔活性炭/亚麻面料 刮涂法 12.7 0.73 0.626 2 5.80 [35]
FTO/TiO2/N719/I-- I 3 -/活性炭/石墨烯/莱赛尔织物/聚对苯二甲酸乙二醇酯 涂覆法 15.5 0.73 0.628 7.09 [36]
FTO/TiO2/N719/I-- I 3 -/聚吡咯/镀镍织物 涂覆法 7.85 0.74 0.66 3.83 [40]
FTO/TiO2/N719/I-- I 3 -/聚苯胺/碳纤维织物 涂覆法 12.1 0.675 0.47 3.81 [41]
硬质平面 FTO/ TiO2/Dye/I-- I 3 -/石墨烯/棉织物/FTO 涂覆法 14.75 0.66 0.709 2 6.93 [37]
FTO/ZnO/N719/I-- I 3 -/活性炭布/FTO 原子沉积 14.03 0.7499 0.655 6.88 [39]
[1] MATHEW S, YELLA A, GAO P, et al. Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers[J]. Nature Chemistry, 2014, 6(3): 242-247.
doi: 10.1038/nchem.1861
[2] SATHARASINGHE A, HUGHES-RILEY T, DIAS T. An investigation of a wash-durable solar energy harvesting textile[J]. Progress in Photovoltaics, 2020, 28(6): 578-592.
doi: 10.1002/pip.3229
[3] 马廷丽, 云斯宁. 染料敏化太阳能电池从理论基础到技术应用[M]. 北京: 化学工业出版社, 2013: 19-32.
MA Tingli, YUN Sining, Dye-sensitized solar cells: theoretical basis to technical application[M]. Beijing: Chemical Industry Press, 2013: 19-32.
[4] TSUBOMURA H, MATSUMURA M, NOMURA Y, et al. Dye-sensitized zinc oxide: aqueous electrolyte: platinum photocell[J]. Nature, 1976, 261(5559): 402-403.
doi: 10.1038/261402a0
[5] GRÄTZEL B O R M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films[J]. Nature, 1991, 353(353): 737-740.
doi: 10.1038/353737a0
[6] Alliance for Sustainable Energy, LLC. Best research-cell efficiencies: emerging photovoltaics[EB/OL].[2020-09-23]. .
[7] HASHEMI S A, RAMAKRISHNA S, ABERLE A G. Recent progress in flexible-wearable solar cells for self-powered electronic devices[J]. Energy & Environmental Science, 2020, 13(3): 685-743.
[8] SHARMA K, SHARMA V, SHARMA S S. Dye-sensitized solar cells: fundamentals and current status[J]. Nanoscale Research Letters, 2018, 13(1): 381.
doi: 10.1186/s11671-018-2760-6
[9] GONG J W, SUMATHY K, QIAO Q Q, et al. Review on dye-sensitized solar cells (DSSCs): advanced techniques and research trends[J]. Renewable & Sustainable Energy Reviews, 2017, 68(1): 234-246.
[10] KOPIDAKIS N, NEALE N R, ZHU K, et al. Spatial location of transport-limiting traps in TiO2 nanoparticle films in dye-sensitized solar cells[J]. Applied Physics Letters, 2005, 87(20): 202106.
doi: 10.1063/1.2130723
[11] MEYER T. Dye solar cells for real:the assembly guide for making your own solar cells[EB/OL].[2012-03-04].
[12] 王霁龙, 刘岩, 景媛媛, 等. 纤维基可穿戴电子设备的研究进展[J]. 纺织学报, 2020, 41(12): 157-165.
WANG Jilong, LIU Yan, JING Yuanyuan, et al. Advances in fiber-based wearable electronic devices[J]. Journal of Textile Research, 2020, 41(12): 157-165.
[13] LV Z B, FU Y P, HOU S C, et al. Large size, high efficiency fiber-shaped dye-sensitized solar cells[J]. Physical Chemistry Chemical Physics, 2011, 13(21): 10076-10083.
doi: 10.1039/c1cp20543a
[14] GAO Z, LIU P, FU X M, et al. Flexible self-powered textile formed by bridging photoactive and electrochemically active fiber electrodes[J]. Journal of Materials Chemistry A, 2019, 7(24): 14447-14454.
doi: 10.1039/C9TA04178H
[15] GRISSOM G, JAKSIK J, MCENTEE M, et al. Three-dimensional carbon nanotube yarn based solid state solar cells with multiple sensitizers exhibit high energy conversion efficiency[J]. Solar Energy, 2018, 171(1): 16-22.
doi: 10.1016/j.solener.2018.06.053
[16] 贺倩, 宋立新, 曹厚宝, 等. ZnO/TiO2皮芯厚度比对染料敏化太阳电池性能的影响[J]. 纺织学报, 2014, 35(10): 1-6.
HE Qian, SONG Lixin, CAO Houbao, et al. Effect of ZnO/TiO2 core-sheath thickness ratios on performance of dye sensitized solar cells[J]. Journal of Textile Research, 2014, 35(10): 1-6.
doi: 10.1177/004051756503500101
[17] CHAE Y, PARK J T, KOH J K, et al. All-solid, flexible solar textiles based on dye-sensitized solar cells with ZnO nanorod arrays on stainless steel wires[J]. Materials Science and Engineering B: Advanced Functional Solid-State Materials, 2013, 178(17): 1117-1123.
doi: 10.1016/j.mseb.2013.06.018
[18] CAI F J, CHEN T, PENG H S. All carbon nanotube fiber electrode-based dye-sensitized photovoltaic wire[J]. Journal of Materials Chemistry, 2012, 22(30): 14856-14860.
doi: 10.1039/c2jm32256k
[19] CHEN T, QIU L B, CAI Z B, et al. Intertwined aligned carbon nanotube fiber based dye-sensitized solar cells[J]. Nano Letters, 2012, 12(5): 2568-2572.
doi: 10.1021/nl300799d
[20] YANG Z B, DENG J, SUN X M, et al. Stretchable, wearable dye-sensitized solar cells[J]. Advanced Materials, 2014, 26(17): 2643-2647.
doi: 10.1002/adma.201400152
[21] HOU S C, LV Z B, WU H W, et al. Flexible conductive threads for wearable dye-sensitized solar cells[J]. Journal of Materials Chemistry, 2012, 22(14): 6549-6552.
doi: 10.1039/c2jm16773e
[22] 孙悦, 范杰, 王亮, 等. 可穿戴技术在纺织服装中的应用研究进展[J]. 纺织学报, 2018, 39(12): 131-138.
SUN Yue, FAN Jie, WANG Liang, et al. Research progress of wearable technology in textiles and apparels[J]. Journal of Textile Research, 2018, 39(12): 131-138.
[23] 李明, 田明伟, 王冰心, 等. 纺织基柔性锌离子电池研究进展[J]. 棉纺织技术, 2021, 49(1): 17-22.
LI Ming, TIAN Mingwei, WANG Bingxin, et al. Research progress of textile-based flexible zinc-ion battery[J]. Cotton Textile Technology, 2021, 49(1): 17-22.
[24] OPWIS K, GUTMANN J S, ALONSO A R L, et al. Preparation of a textile-based dye-sensitized solar cell[J]. International Journal of Photoenergy, 2016, 2016(1): 1-11.
[25] JUNGER I J, HOMBURG S V, GRETHE T, et al. Examination of the sintering process-dependent properties of TiO2 on glass and textile substrates[J]. Journal of Photonics for Energy, 2017, 7(1): 15001.
doi: 10.1117/1.JPE.7.015001
[26] LIU J, LI Y, ARUMUGAM S, et al. Screen printed dye-sensitized solar cells (DSSCs) on woven polyester cotton fabric for wearable energy harvesting applications[J]. Materials Today: Proceedings, 2018, 5(5): 13753-13758.
doi: 10.1016/j.matpr.2018.02.015
[27] LIU J Q, LI Y, LI M L, et al. Processing of printed dye sensitized solar cells on woven textiles[J]. Ieee Journal of Photovoltaics, 2019, 9(4): 1020-1024.
doi: 10.1109/JPHOTOV.2019.2899432
[28] KAKIAGE K, FUJIMURA E, ABE M, et al. Application of micro-metal textile for flexible dye-sensitized solar cell[J]. key Engineering Materials, 2011, 459: 92-99.
doi: 10.4028/www.scientific.net/KEM.459.92
[29] YUN M J, CHA S I, SEO S H, et al. Insertion of dye-sensitized solar cells in textiles using a conventional weaving process[J]. Scientific Reports, 2015, 5: 11022.
doi: 10.1038/srep11022
[30] YUN M J, CHA S I, SEO S H, et al. Float printing deposition to control the morphology of TiO2 photoanodes on woven textile metal substrates for TCO-free flexible dye-sensitized solar cells[J]. Rsc Advances, 2016, 6(71): 67331-67339.
doi: 10.1039/C6RA09457K
[31] YUN M J, CHA S I, SEO S H, et al. Highly flexible dye-sensitized solar cells produced by sewing textile electrodes on cloth[J]. Scientific Reports, 2014, 4(1): 5322.
doi: 10.1038/srep05322
[32] SAHITO I A, SUN K C, ARBAB A A, et al. Graphene coated cotton fabric as textile structured counter electrode for DSSC[J]. Electrochimica Acta, 2015, 173: 164-171.
doi: 10.1016/j.electacta.2015.05.035
[33] ARBAB A A, SUN K C, SAHITO I A, et al. Multiwalled carbon nanotube coated polyester fabric as textile based flexible counter electrode for dye sensitized solar cell[J]. Physical Chemistry Chemical Physics, 2015, 17(19): 12957-12969.
doi: 10.1039/C5CP00818B
[34] ARBAB A A, SUN K C, SAHITO I A, et al. Fabrication of textile fabric counter electrodes using activated charcoal doped multi walled carbon nanotube hybrids for dye sensitized solar cells[J]. Journal of Materials Chemistry A, 2016, 4(4): 1495-1505.
doi: 10.1039/C5TA08858E
[35] MEMON A A, ARBAB A A, SAHITO I A, et al. Synthesis of highly photo-catalytic and electro-catalytic active textile structured carbon electrode and its application in DSSCs[J]. Solar Energy, 2017, 150(25): 521-531.
doi: 10.1016/j.solener.2017.04.052
[36] MENGAL N, ARBAB A A, SAHITO I A, et al. An electrocatalytic active lyocell fabric cathode based on cationically functionalized and charcoal decorated graphite composite for quasi-solid state dye sensitized solar cell[J]. Solar Energy, 2017, 155(1): 110-120.
doi: 10.1016/j.solener.2017.06.032
[37] SAHITO I A, SUN K C, ARBAB A A, et al. Flexible and conductive cotton fabric counter electrode coated with graphene nanosheets for high efficiency dye sensitized solar cell[J]. Journal of Power Sources, 2016, 319: 90-98.
doi: 10.1016/j.jpowsour.2016.04.025
[38] MULLER S, WIESCHOLLEK D, JUNGER I J, et al. Back electrodes of dye-sensitized solar cells on textile fabrics[J]. Optik, 2019, 198: 163243.
doi: 10.1016/j.ijleo.2019.163243
[39] TSAI M H, WANG C L, HE Z H, et al. Achieving a superior electrocatalytic activity of carbon cloth via atomic layer deposition as a flexible counter electrode for efficient dye-sensitized solar cells[J]. Journal of Power Sources, 2020, 458: 228043.
doi: 10.1016/j.jpowsour.2020.228043
[40] XU Q, LI M X, YAN P, et al. Polypyrrole-coated cotton fabrics prepared by electrochemical polymerization as textile counter electrode for dye-sensitized solar cells[J]. Organic Electronics, 2016, 29: 107-113.
doi: 10.1016/j.orgel.2015.11.007
[41] MOTLAGH M S, MOTTAGHITALAB V. The charge transport characterization of the polyaniline coated carbon fabric as a novel textile based counter electrode for flexible dye-sensitized solar cell[J]. Electrochimica Acta, 2017, 249: 308-317.
doi: 10.1016/j.electacta.2017.08.032
[42] JUNGER I J, WEHLAGE D, BOTTJER R, et al. Dye-sensitized solar cells with electrospun nanofiber mat-based counter electrodes[J]. Materials, 2018, 11(9): 1604.
doi: 10.3390/ma11091604
[43] MILLINGTON K R, FINCHER K W, KING A L. Mordant dyes as sensitisers in dye-sensitised solar cells[J]. Solar Energy Materials and Solar Cells, 2007, 91(17): 1618-1630.
doi: 10.1016/j.solmat.2007.05.020
[44] ABDOU E M, HAFEZ H S, BAKIR E, et al. Photostability of low cost dye-sensitized solar cells based on natural and synthetic dyes[J]. Spectrochimica Acta Part A Molecular & Biomolecular Spectroscopy, 2013, 115: 202-207.
[45] PATHAN H M, INAMDAR Y A, SHAIKH A V, et al. ZnO photoelectrode for textile dye (reactive blue 59) sensitized solar cell[J]. Advanced Science Letters, 2014, 20(5/6): 1155-1158.
doi: 10.1166/asl.2014.5443
[46] CHAE Y, KIM S J, KIM J H, et al. Metal-free organic-dye-based flexible dye-sensitized solar textiles with panchromatic effect[J]. Dyes and Pigments, 2015, 113: 378-389.
doi: 10.1016/j.dyepig.2014.09.004
[47] YADAV V, CHAUDHARY S, NEGI C M S, et al. Textile dyes as photo-sensitizer in the dye sensitized solar cells[J]. Optical Materials, 2020, 109: 110306.
doi: 10.1016/j.optmat.2020.110306
[48] KIM J H, KOO S J, CHO H, et al. 6.16% Efficiency of solid-state fiber dye-sensitized solar cells based on LiTFSI electrolytes with novel TEMPOL derivatives[J]. Acs Sustainable Chemistry & Engineering, 2020, 8(40): 15065-15071.
[1] 顾张弘, 姚响, 王锦思, 张耀鹏. 具有细胞黏附反差特性的单层平行丝素蛋白纤维图案的制备及其性能[J]. 纺织学报, 2022, 43(05): 1-6.
[2] 慕怡菲, 金子敏, 阎玉秀, 吴德昊, 周文龙, 陶建伟. 远红外锦纶织物对乳腺肿瘤细胞增殖的影响[J]. 纺织学报, 2022, 43(05): 109-115.
[3] 陈鹏, 廖世豪, 沈兰萍, 王瑄, 王鹏. 聚乳酸/聚酮共混纤维分散染料染色性能[J]. 纺织学报, 2022, 43(05): 12-17.
[4] 刘锁, 王雅倩, 魏安方, 赵磊, 凤权. 功能化水刺粘胶纤维膜的制备及其在漆酶固定化中的应用[J]. 纺织学报, 2022, 43(05): 124-129.
[5] 李琴, 李兴兴, 解芳芳, 周文龙, 陈恺宜, 刘宇清. 静电纺丝和炭化法制备纳米纤维素储能材料研究进展[J]. 纺织学报, 2022, 43(05): 178-184.
[6] 崔玉莲, 刘红. 纺织品洗涤过程中纤维微塑料的形成因素分析[J]. 纺织学报, 2022, 43(05): 195-201.
[7] 樊威, 刘红霞, 陆琳琳, 窦皓, 孙艳丽. 废旧天然纤维纺织品回收利用现状及高值化利用策略[J]. 纺织学报, 2022, 43(05): 49-56.
[8] 赵波波, 王亮, 李敬毓, 万刚, 夏兆鹏, 刘雍. 六次甲基四胺交联酚醛纤维的制备及其性能[J]. 纺织学报, 2022, 43(05): 57-62.
[9] 陈锋, 姬忠礼, 于文瀚, 董伍强, 王倩琳, 王德国. 纳米纤维膜润湿性对三明治结构复合过滤材料气液过滤性能的影响[J]. 纺织学报, 2022, 43(05): 63-69.
[10] 杨科, 闫俊, 肖勇, 徐晶, 陈磊, 刘雍. 电化学沉积锌电池MnOx/碳纳米纤维膜自支撑正极的制备及其电化学特性[J]. 纺织学报, 2022, 43(05): 77-85.
[11] 余鹏举, 王黎黎, 张文奇, 刘洋, 李文斌. 回潮率对石英纤维纱织造前后力学性能的影响[J]. 纺织学报, 2022, 43(05): 92-96.
[12] 孙春红, 丁广太, 方坤. 基于稀疏字典学习的羊绒与羊毛分类[J]. 纺织学报, 2022, 43(04): 28-32.
[13] 俞琰, 王西朝, 张瑞云, 李蓉丽, 程隆棣. 云南野生火草纤维及其绒网的结构与性能[J]. 纺织学报, 2022, 43(04): 10-14.
[14] 邵灵达, 黄锦波, 金肖克, 田伟, 祝成炎. 硅烷偶联剂改性处理对玻璃纤维织物增强聚苯硫醚复合材料性能的影响[J]. 纺织学报, 2022, 43(04): 68-73.
[15] 李兴兴, 李琴, 岳甜甜, 刘宇清. 微纳米纤维素材料的微流控制备技术研究进展[J]. 纺织学报, 2022, 43(04): 180-186.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!