纺织学报 ›› 2022, Vol. 43 ›› Issue (06): 206-214.doi: 10.13475/j.fzxb.20210303109
摘要:
为了使防寒服装更好地满足人体各部位冷防护差异化需求,并充分发挥其功能特性,针对各类电子、通信及计算机等相关技术在防寒服中有效应用的问题,在总结防寒服发展进程的基础上,聚焦4类技术问题详细探究其在防寒服中的应用难点及制约因素,包括人体与环境动态信号的采集与传输技术、加热元件的应用模式、温度控制算法的实现方法及人体热生理模型的应用。研究发现:信号监测与传输功能在防寒服中的应用程度低,加热单元的布局方式尚无夯实理论支撑,温控算法的设计缺乏对人体生理需求的机理性分析,人体热生理模型的应用局限较多;最后指出研究功能集成度高、可满足不同群体热生理需求的非均匀智能温控防寒服且构建完整的性能评价体系在未来的研究中十分必要。
中图分类号:
[1] |
FRIEDMAN L S, ABASILIM C, FITTS R, et al. Clinical outcomes of temperature related injuries treated in the hospital setting, 2011-2018[J]. Environmental Research, 2020, 189: 109882.
doi: 10.1016/j.envres.2020.109882 |
[2] |
GASPARRINI A, GUO Y, HASHIZUME M, et al. Mortality risk attributable to high and low ambient temperature: a multicountry observational study[J]. The Lancet, 2015, 386(9991): 369-375.
doi: 10.1016/S0140-6736(14)62114-0 |
[3] |
PAPADOPOULOS A M. State of the art in thermal insulation materials and aims for future develop-ments[J]. Energy and Buildings, 2005, 37(1): 77-86.
doi: 10.1016/j.enbuild.2004.05.006 |
[4] |
DAI L, CHANG D W, BAEK J B, et al. Carbon nanomaterials for advanced energy conversion and storage[J]. Small, 2012, 8(8): 1130-1166.
doi: 10.1002/smll.201101594 |
[5] | 吴改红, 吴雄英, 丁雪梅, 等. 低温防护服的设计与评价[J]. 上海纺织科技, 2015, 43(4): 50-53. |
WU Gaihong, WU Xiongying, DING Xuemei, et al. The design and evaluation of low temperature protective clothhing[J]. Shanghai Textile Science & and Technology, 2015, 43(4): 50-53. | |
[6] | 王泽军, 王艾平, 杨天, 等. 寒冷环境下科学着装的基本策略研究[J]. 解放军预防医学杂志, 2020, 38(5): 7-9. |
WANG Zhejun, WANG Aiping, YANG Tian, et al. Research on the basic strategy of scientific dressing in cold environment[J]. J Prev Med Chin PLA, 2020, 38(5): 7-9. | |
[7] |
RENBERG J, CHRISTIANSEN M T, WIGGEN Y N, et al. Metabolic rate and muscle activation level when wearing state-of-the-art cold-weather protective clothing during level and inclined walking[J]. Applied Ergonomics, 2020, 82: 102956.
doi: 10.1016/j.apergo.2019.102956 |
[8] | MäKINEN H, JUSSILA K. Cold-protective clothing: types, design and standards, protective clothing[M]. Oxford: Woodhead Publishing, 2014: 3-38. |
[9] | WANG F, LEE H. Evaluation of an electrically heated vest (EHV) using a thermal manikin in cold environments[J]. The Annals of Occupational Hygiene, 2009, 54(1): 117-124. |
[10] |
CHAN C Y L, BURTON D R. Local heating source for shallow water divers[J]. Journal of Power Sources, 1981, 6(3): 291-304.
doi: 10.1016/0378-7753(81)80033-X |
[11] |
WANG F, KANG Z, ZHOU J. Model validation and parametric study on a personal heating clothing system (PHCS) to help occupants attain thermal comfort in unheated buildings[J]. Building and Environment, 2019, 162: 106308.
doi: 10.1016/j.buildenv.2019.106308 |
[12] |
KUMAR N, GUPTA S K. Progress and application of phase change material in solar thermal energy: an overview[J]. Materials Today: Proceedings, 2021, 44(1): 271-281.
doi: 10.1016/j.matpr.2020.09.465 |
[13] | SU Y, ZHU W, TIAN M, et al. Intelligent bidirectional thermal regulation of phase change material incorporated in thermal protective clothing[J]. Applied Thermal Engineering, 2020, 174(1): 1-24. |
[14] |
DENG Y, CAO B, LIU B, et al. Effects of local heating on thermal comfort of standing people in extremely cold environments[J]. Building and Environment, 2020, 185: 107256.
doi: 10.1016/j.buildenv.2020.107256 |
[15] |
KLUTH K, PENZKOFER M, STRASSER H. Age-related physiological responses to working in deep cold[J]. Hum Factor Ergon Manuf, 2013, 23(3): 163-172.
doi: 10.1002/hfm.20305 |
[16] |
KOJIMA K, HIRATA A, HASEGAWA K, et al. Risk management of heatstroke based on fast computation of temperature and water loss using weather data for exposure to ambient heat and solar radiation[J]. IEEE Access, 2018, 6(1): 3774-3785.
doi: 10.1109/ACCESS.2018.2791962 |
[17] |
LI D, GAO W. Physiological state assessment and prediction based on multi-sensor fusion in body area network[J]. Biomedical Signal Processing and Control, 2021, 65: 102340.
doi: 10.1016/j.bspc.2020.102340 |
[18] | KALAIVAANI P T, KRISHNAMOORTHI R. Design and implementation of low power bio signal sensors for wireless body sensing network applications[J]. Microprocessors and Microsystems, 2020, 79(4): 1-14. |
[19] | CUNHA SILVEIRA R M, ROCHA DUTRA T D, SAMPAIO ALVES F P R, et al. Monitoring an environment using wireless sensor network[C]// International Conference on Internet Science. Perpignan: Springer, 2019: 292-301. |
[20] |
CHAN S Y, CHAU C K. Development of artificial neural network models for predicting thermal comfort evaluation in urban parks in summer and winter[J]. Building and Environment, 2019, 164: 106364.
doi: 10.1016/j.buildenv.2019.106364 |
[21] |
DENG Z, CHEN Q. Artificial neural network models using thermal sensations and occupants' behavior for predicting thermal comfort[J]. Energy and Buildings, 2018, 174(1): 587-602.
doi: 10.1016/j.enbuild.2018.06.060 |
[22] |
SHANG L, LYU Y, HAN W. Microstructure and thermal insulation property of silica composite aerogel[J]. Materials, 2019, 12(933): 2-11.
doi: 10.3390/ma12010002 |
[23] | ULBRICH M, LÜKEN M, MÜHLSTEFF J, et al. Chapter 19: wearable bioimpedance systems for home-care monitoring using BSNs[M]. 2nd ed. Oxford: Academic Press, 2021: 519-540. |
[24] |
K B K, CH S M, MOHD ABDUL N, et al. Smart jacket for health monitoring using LabVIEW[J]. Materials Today Proceedings, 2020, 46(18):1-6.
doi: 10.1016/j.matpr.2020.02.868 |
[25] |
GANDHI V, SINGH J. An automated review of body sensor networks research patterns and trends[J]. Journal of Industrial Information Integration, 2020, 18: 100132.
doi: 10.1016/j.jii.2020.100132 |
[26] |
WANG Y, WANG H, XUAN J, et al. Powering future body sensor network systems: a review of power sources[J]. Biosensors and Bioelectronics, 2020, 166: 112410.
doi: 10.1016/j.bios.2020.112410 |
[27] |
GAO W, EMAMINEJAD S, NYEIN H Y Y, et al. Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis[J]. Nature, 2016, 529(7587): 509-514.
doi: 10.1038/nature16521 |
[28] |
KEUM K, EOM J, LEE J H, et al. Fully-integrated wearable pressure sensor array enabled by highly sensitive textile-based capacitive ionotronic devices[J]. Nano Energy, 2021, 79: 105479.
doi: 10.1016/j.nanoen.2020.105479 |
[29] |
QI K, ZHOU Y, OU K, et al. Weavable and stretchable piezoresistive carbon nanotubes-embedded nanofiber sensing yarns for highly sensitive and multimodal wearable textile sensor[J]. Carbon, 2020, 170(1): 464-476.
doi: 10.1016/j.carbon.2020.07.042 |
[30] |
KIM D, KWON J, HAN S, et al. Deep full-body motion network for a soft wearable motion sensing suit[J]. IEEE/ASME Transactions on Mechatronics, 2019, 24(1): 56-66.
doi: 10.1109/TMECH.2018.2874647 |
[31] |
KNIGHT J F, BABER C. Assessing the physical loading of wearable computers[J]. Appl Ergon, 2007, 38(2): 237-47.
doi: 10.1016/j.apergo.2005.12.008 |
[32] |
KNIGHT J F, BABER C. A tool to assess the comfort of wearable computers[J]. Human Factors, 2005, 47(1): 77-91.
doi: 10.1518/0018720053653875 |
[33] | FAN X, LIN H, YE C, et al. Smart heating clothes based on bluetooth[C]// 14th International Conference on Computer Science & Education. Canada: IEEE, 2019: 200-203. |
[34] | CHEN Z, LI J, SONG W, et al. Smart wireless charging heating insoles: improving body thermal comfort of young males in an extremely cold environment[J]. Clothing and Textiles Research Journal, 2020, 11(1): 1-5. |
[35] | 马亮, 张欣, 应柏安. 面向防电磁辐射服装设计的生物电磁建模方法[J]. 服装学报, 2018, 3(6): 497-505. |
MA Liang, ZHANG Xin, YING Baian, et al. Research on bio-electromagnetic model for electromagnetic[J]. Journal of Clothing, 2018, 3(6): 497-505. | |
[36] |
RASHED E A, GOMEZ-TAMES J, HIRATA A. Development of accurate human head models for personalized electromagnetic dosimetry using deep learning[J]. NeuroImage, 2019, 202: 116132.
doi: 10.1016/j.neuroimage.2019.116132 |
[37] | 陈扬. 电热服的热性能分析与模拟[D]. 杭州: 浙江理工大学, 2018:16-30. |
CHEN Yang. Thermal properties analysis and simulation of electrically heated garments[D]. Hangzhou: Zhejiang Sci-Tech University, 2018:16-30. | |
[38] |
YANG Y, QIAN J, CHEN Y. Multi-scale modeling and thermal transfer properties of electric heating fabrics system[J]. International Journal of Clothing Science and Technology, 2019, 31(6): 825-838.
doi: 10.1108/IJCST-03-2019-0026 |
[39] | 李冉. 下肢障碍者用电加热户外防寒服设计与评价[D]. 上海: 东华大学, 2020:3-16. |
LI Ran. Design and evaluation of electric-heating outdoor clothing for people with mobility challenge[D]. Shanghai: Donghua University, 2020:3-20. | |
[40] |
MA N, LU Y, XU F, et al. Development and performance assessment of electrically heated gloves with smart temperature control function[J]. International Journal of Occupational Safety and Ergonomics, 2020, 26(1): 46-54.
doi: 10.1080/10803548.2018.1457886 |
[41] | CALABRESE B. Data integration and transfor-mation[M]. Oxford: Academic Press, 2019: 477-479. |
[42] |
CHALISE P, NI Y, FRIDLEY B L. Network-based integrative clustering of multiple types of genomic data using non-negative matrix factorization[J]. Computers in Biology and Medicine, 2020, 118: 103625.
doi: 10.1016/j.compbiomed.2020.103625 |
[43] |
JAYARATNE M, NALLAPERUMA D, DE SILVA D, et al. A data integration platform for patient-centered e-healthcare and clinical decision support[J]. Future Generation Computer Systems, 2019, 92(1): 996-1008.
doi: 10.1016/j.future.2018.07.061 |
[44] |
NADAL S, ROMERO O, ABELLÓ A, et al. An integration-oriented ontology to govern evolution in big data ecosystems[J]. Information Systems, 2019, 79(1): 3-19.
doi: 10.1016/j.is.2018.01.006 |
[45] |
WU Q, LIU J, ZHANG L, et al. Effect of temperature and clothing thermal resistance on human sweat at low activity levels[J]. Building and Environment, 2020, 183: 107117.
doi: 10.1016/j.buildenv.2020.107117 |
[46] |
GUAN M, ANNAHEIM S, LI J, et al. Apparent evaporative cooling efficiency in clothing with continuous perspiration: a sweating manikin study[J]. International Journal of Thermal Sciences, 2019, 137(1): 446-455.
doi: 10.1016/j.ijthermalsci.2018.12.017 |
[47] | NOMOTO A, TAKAHASHI Y, YODA S, et al. Measurement of local evaporative resistance of typical clothing ensemble using a sweating thermal manikin[J]. Journal of Environmental Engineering, 2019, 84(761): 653-660. |
[48] |
KONG M, DANG T Q, ZHANG J, et al. Micro-environmental control for efficient local heating: CFD simulation and manikin test verification[J]. Building and Environment, 2019, 147(1): 382-396.
doi: 10.1016/j.buildenv.2018.10.018 |
[49] |
SONG W, LU Y, LIU Y, et al. Effect of partial-body heating on thermal comfort and sleep quality of young female adults in a cold indoor environment[J]. Building and Environment, 2020, 169: 106585.
doi: 10.1016/j.buildenv.2019.106585 |
[50] | STEVENS K, FULLER M. Thermoregulation and clothing comfort[M]. Oxford: Woodhead Publishing, 2015: 117-138. |
[51] |
WATSON L, POTTER A, GALLUCCI R, et al. Is baby too warm? The use of infant clothing, bedding and home heating in Victoria, Australia[J]. Early Human Development, 1998, 51(2): 93-107.
doi: 10.1016/S0378-3782(97)00085-6 |
[52] |
XIE Y, NIU J, ZHANG H, et al. Development of a multi-nodal thermal regulation and comfort model for the outdoor environment assessment[J]. Building and Environment, 2020, 176: 106809.
doi: 10.1016/j.buildenv.2020.106809 |
[53] |
MUBARAK S, KHANDAY M A, HAQ A U. Variational finite element approach to study heat transfer in the biological tissues of premature infants[J]. Journal of Thermal Biology, 2020, 92: 102669.
doi: 10.1016/j.jtherbio.2020.102669 |
[54] |
LIU G, WANG Z, LI C, et al. Heat exchange character and thermal comfort of young people in the building with solar radiation in winter[J]. Building and Environment, 2020, 179: 106937.
doi: 10.1016/j.buildenv.2020.106937 |
[55] |
KENNEY W L, WOLF S T, DILLON G A, et al. Temperature regulation during exercise in the heat: insights for the aging athlete[J]. Journal of Science and Medicine in Sport, 2020, 24(8):739-746.
doi: 10.1016/j.jsams.2020.12.007 |
[56] |
SALATA F, GOLASI I, VERRUSIO W, et al. On the necessities to analyse the thermohygrometric perception in aged people: a review about indoor thermal comfort, health and energetic aspects and a perspective for future studies[J]. Sustainable Cities and Society, 2018, 41(1): 469-480.
doi: 10.1016/j.scs.2018.06.003 |
[57] |
UDAYRAJ, WANG F. A three-dimensional conjugate heat transfer model for thermal protective clothing[J]. International Journal of Thermal Sciences, 2018, 130(1): 28-46.
doi: 10.1016/j.ijthermalsci.2018.04.005 |
[58] |
AGANOVIC A, STEFFENSEN M, CAO G. CFD study of the air distribution and occupant draught sensation in a patient ward equipped with protected zone venti-lation[J]. Building and Environment, 2019, 162: 106279.
doi: 10.1016/j.buildenv.2019.106279 |
[59] | 唐元梁. 基于多尺度建模的人体热调节特性计算机模拟[D]. 合肥: 中国科学技术大学, 2014:2-18. |
TANG Yuanliang. Computational simulation on human thermal regulation based on a multi-scale model[D]. Hefei: University of Science and Technology of China, 2014: 2-18. | |
[60] |
KANG Z, WANG F, UDAYRAJ. An advanced three-dimensional thermoregulation model of the human body: development and validation[J]. International Communications in Heat and Mass Transfer, 2019, 107(1): 34-43.
doi: 10.1016/j.icheatmasstransfer.2019.05.006 |
[61] |
LUO M, WANG Z, ZHANG H, et al. High-density thermal sensitivity maps of the human body[J]. Building and Environment, 2020, 167: 106435.
doi: 10.1016/j.buildenv.2019.106435 |
[62] |
SCHMIDT D, SCHLEE G, MILANI T L, et al. Thermal sensitivity mapping: warmth and cold detection thresholds of the human torso[J]. Journal of Thermal Biology, 2020, 93: 102718.
doi: 10.1016/j.jtherbio.2020.102718 |
[63] |
FILINGERI D, ZHANG H, ARENS E A. Thermosensory micromapping of warm and cold sensitivity across glabrous and hairy skin of male and female hands and feet[J]. Journal of Applied Physiology, 2018, 125(3): 723-736.
doi: 10.1152/japplphysiol.00158.2018 |
[1] | 张昭华, 李璐瑶, 安瑞平. 管道式通风服头部与躯干部位的热湿舒适性评价[J]. 纺织学报, 2020, 41(08): 88-94. |
[2] | 苏文桢, 卢业虎, 王方明, 宋文芳. 新型充气夹克的研制与保暖性能评价[J]. 纺织学报, 2020, 41(05): 140-145. |
[3] | 苏文桢, 宋文芳, 卢业虎, 杨秀月. 充气防寒服的保暖性能[J]. 纺织学报, 2020, 41(02): 115-118. |
[4] | 刘羿君;孙丽平;封云芳;赵志毅;沈建琴;金晓航. 计算机智能技术在真丝绸连缸染色中的应用[J]. 纺织学报, 2004, 25(04): 96-97. |
|