纺织学报 ›› 2022, Vol. 43 ›› Issue (04): 20-27.doi: 10.13475/j.fzxb.20210307608

• 纤维材料 • 上一篇    下一篇

超声波处理对兔毛角蛋白组成与结构的影响

王晓清1,2, 史志铭2(), 李晓宇1   

  1. 1.内蒙古工业大学 轻工与纺织学院, 内蒙古 呼和浩特 010080
    2.内蒙古工业大学 材料科学与工程学院, 内蒙古 呼和浩特 010051
  • 收稿日期:2021-03-18 修回日期:2021-10-29 出版日期:2022-04-15 发布日期:2022-04-20
  • 通讯作者: 史志铭
  • 作者简介:王晓清(1985—),女,副教授,博士。主要研究方向为废旧绒毛回收及其资源化、高值化利用。
  • 基金资助:
    内蒙古自然科学基金项目(2020LH05005);内蒙古自治区大学生创新创业训练计划项目(202010128018)

Effect of ultrasonic treatment on composition and structure of rabbit hair keratin

WANG Xiaoqing1,2, SHI Zhiming2(), LI Xiaoyu1   

  1. 1. College of Textile and Light Industry, Inner Mongolia University of Technology, Hohhot, Inner Mongolia 010080, China
    2. School of Materials Science and Engineering, Inner Mongolia University of Technology, Hohhot, Inner Mongolia 010051, China
  • Received:2021-03-18 Revised:2021-10-29 Published:2022-04-15 Online:2022-04-20
  • Contact: SHI Zhiming

摘要:

针对化学试剂或高温处理促进二硫键断裂但导致酰胺键水解生成小分子多肽的问题,采用超声波辅助还原法提取了兔毛角蛋白,并使用蛋白质电泳仪、红外光谱仪、荧光光谱仪和粒度分析仪等研究了超声波处理时间对兔毛角蛋白的氨基酸组成和各级结构的影响。结果表明:随着超声波处理时间的增加,兔毛角蛋白的氨基酸组分没有发生变化,但氨基酸含量降低,胱氨酸损失率增加,游离巯基含量呈现先增加后减小的趋势;角蛋白的分子质量主要分布在31~43 ku之间,大分子质量角蛋白逐渐增加,α-螺旋结构逐渐转变为β-折叠和无规卷曲结构,角蛋白分子的粒径降低;提取的角蛋白具有稳定的三级结构,且角蛋白分子不易发生集聚。

关键词: 超声波处理, 兔毛角蛋白, 氨基酸组成, 分子质量, α-螺旋, β-折叠, 化学结构

Abstract:

In view of the destruction of disulfide bonds by increasing chemical reagents or high temperature treatment, resulting in the hydrolysis of amide bonds to generate small molecular polypeptides, ultrasonic treatment combined with reduction method was used to extract the keratin from the rabbit hair. The effects of ultrasonic treatment on the chemical composition and structure of rabbit hair keratin were investigated by protein electrophoresis meter, infrared spectrometer, fluorescence spectrometer and particle size analyzer. The results show that with the increase of ultrasonic treatment time, the amino acid composition of rabbit hair keratin remained constant, but the amino acid content decreased. The loss rate of cystine increased and the content of free sulfhydryl group firstly increases and then decreases, and the molecular weight increases gradually and mainly distribute in the range of 31-43 ku. The secondary structure changes from α-helix structure to β-sheet structure and random coil structure, and the particle size of the keratin decrease. The fluorescence spectra show that keratin has fixed structure and is not easy to agglomerate.

Key words: ultrasonic treatment, rabbit hair keratin, amino acid composition, molecular weight, α-helix, β-sheet, chemical structure

中图分类号: 

  • TS252.1

图1

氨基酸含量分析结果"

表1

不同种类氨基酸含量"

试样
编号
酸性氨基
酸含量/%
碱性氨基
酸含量/%
中性氨基
酸含量/%
总含
量/%
RT 19.23 13.31 61.41 93.95
UT-RH 18.62 12.95 59.42 90.99
UT-0 20.47 11.70 53.28 85.45
UT-1 21.25 11.69 53.88 86.82
UT-2 21.55 11.89 54.63 88.07
UT-3 21.22 12.14 54.94 88.30
UT-4 21.53 12.09 54.34 87.96

图2

超声波处理时间对兔毛角蛋白胱氨酸及游离巯基的影响"

图3

兔毛角蛋白的 SDS-PAGE 图谱"

图4

兔毛角蛋白的红外光谱图和拉曼光谱图"

表2

兔毛及其角蛋白的二级结构含量"

试样
编号
α-螺
β-折
β-折叠/
无规卷曲
末端羧
无规卷
RH 43.73 9.66 38.98 7.63
UT-RH 7.63 7.63 49.86 3.37
UT-0 26.99 18.03 45.14 9.83
UT-1 33.52 15.23 44.15 7.11
UT-2 29.53 17.53 44.20 8.74
UT-3 10.72 48.36 11.86 29.06
UT-4 7.47 53.33 8.25 30.95

图5

兔毛及其角蛋白的X射线衍射谱图"

表3

结晶度和晶格间距"

试样
编号
结晶
度/%
衍射峰1 衍射峰2
2θ/(°) 晶面间距/nm 2θ/(°) 晶面间距/nm
RH 21.88 9.47 0.932 20.44 0.434
UT-RH 15.94 9.27 0.953 19.28 0.460
UT-0 2.85 9.31 0.949 19.42 0.456
UT-1 1.56 8.69 1.016 19.80 0.447
UT-2 1.08 9.07 0.974 19.62 0.452
UT-3 1.58 8.97 0.985 19.52 0.454
UT-4 1.19 8.49 1.040 19.58 0.453

图6

兔毛角蛋白的内源荧光光谱"

图7

兔毛角蛋白的粒径分布与ζ-电位值"

[1] 黎淑淳. 从兔毛中提取L-精氨酸的研究[D]. 天津: 天津工业大学, 2017:13-18.
LI Shuchun. Study on extraction of L-arginine from rabbit hair[D]. Tianjin: Tiangong University, 2017:13-18.
[2] 贾如琰, 何玉凤, 王荣民, 等. 角蛋白的分子构成、提取及应用[J]. 化学通报, 2008, 71(4): 265-271.
JIA Ruyan, HE Yufeng, WANG Rongmin, et al. Advanced in structure, extract and applications of keratins[J]. Chemistry Bulletin, 2008, 71(4): 265-271.
[3] SHAVANDI A, SILVA T H, BEKHIT A A, et al. Keratin: dissolution, extraction and biomedical application[J]. Biomaterials Science, 2017, 5(9): 1699-1735.
doi: 10.1039/C7BM00411G
[4] KIM S Y, PARK B J, LEE Y, et al. Human hair keratin-based hydrogels as dynamic matrices for facilitating wound healing[J]. Journal of Industrial and Engineering Chemistry, 2019, 73: 142-151.
doi: 10.1016/j.jiec.2019.01.017
[5] ESPARZA Y, BANDARA N, ULLAH A, et al. Hydrogels from feather keratin show higher viscoelastic properties and cell proliferation than those from hair and wool keratins[J]. Materials Science & Engineering C, 2018, 90: 446-453.
[6] BLACKBURN S, LEE G R. The reaction of wool keratin with alkali[J]. Biochimica Biophysica Acta, 1956, 19(3): 505-512.
doi: 10.1016/0006-3002(56)90474-7
[7] TIMMONS S F, BLANCHARD C R, SMITH R A. Method of making and cross-linking keratin-based films and sheets, US6124265[P]. 2000-09-26.
[8] GODDARD D R, MICHAELIS L. Derivatives of keratin[J]. Journal of Biological Chemistry, 1935, 112(1): 361-371.
doi: 10.1016/S0021-9258(18)74993-4
[9] ZHANG Y, ZHAO W, YANG R. Steam flash explosion assisted dissolution of keratin from feathers[J]. ACS Sustainable Chemistry & Engineering, 2015, 3(9): 2036-2042.
[10] GHOSH A, CLERENS S, DEB-CHOUDHURY S, et al. Thermal effects of ionic liquid dissolution on the structures and properties of regenerated wool keratin[J]. Polymer Degradation and Stability, 2014, 108: 108-115.
doi: 10.1016/j.polymdegradstab.2014.06.007
[11] ANTUNES E, CÉLIA F C, AZOIA N G, et al. The effects of solvent composition on the affinity of a peptide towards hair keratin: experimental and molecular dynamics data[J]. RSC Advances, 2015, 5(16): 12365-12371.
doi: 10.1039/C4RA13901A
[12] IESEL V, LOEY A V, HENDRICKX M. Changes in sulfhydryl content of egg white proteins due to heat and pressure treatment[J]. Journal of Agricultural and Food Chemistry, 2005, 53(14): 5726-5733.
doi: 10.1021/jf050289+
[13] LAEMMLI U K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4[J]. Nature, 1970, 227(5259): 680-685.
doi: 10.1038/227680a0
[14] SINGH C. Identification of β-turn and random coil amide III infrared bands for secondary structure estimation of proteins[J]. Biophysical Chemistry, 1999, 80(1): 7-20.
doi: 10.1016/S0301-4622(99)00060-5
[15] 袁久刚, 钱伟伟, 朱华君, 等. 超声波处理对羊毛纤维结构的影响[J]. 染整技术, 2013, 35(12): 11-14.
YUAN Jiugang, QIAN Weiwei, ZHU Huajun, et al. Influence of ultrasonic treatment on structure of wool fiber[J]. Textile Dyeing and Finishing Journal, 2013, 35(12): 11-14.
[16] 张林. 人发角蛋白的提取,纤维制备及对棉织物整理研究[D]. 青岛: 青岛大学, 2015:39-40.
ZHANG Lin. Study on the extraction of human hair keratin, preparation of fibers and finishing of cotton fabrics[D]. Qingdao: Qingdao University, 2015: 39-40.
[17] MOORE K E, MANGOS D N, SLATTERY A D, et al. Wool deconstruction using a benign eutectic melt[J]. RSC Advances, 2016, 6(24): 20095-20101.
doi: 10.1039/C5RA26516A
[18] ZOCCOLA M, ALUIGI A, PATRUCCO A, et al. Microwave-assisted chemical-free hydrolysis of wool keratin[J]. Textile Research Journal, 2012, 82(19): 2006-2018.
doi: 10.1177/0040517512452948
[19] RINTOUL L, CARTER E A, STEWART S D, et al. Keratin orientation in wool and feathers by polarized Raman spectroscopy[J]. Biopolymers, 2000, 57(1): 19-28.
doi: 10.1002/(SICI)1097-0282(2000)57:1<19::AID-BIP4>3.0.CO;2-Z
[20] LAURENT C M, DYKE J M, COOK R B, et al. Spectroscopy on the wing: investigating possible differences in protein secondary structures in feather shafts of birds using Raman spectroscopy[J]. Journal of Structural Biology, 2020, 211(1): 107529.
doi: 10.1016/j.jsb.2020.107529
[21] POOLE A J, LYONS R E, CHURCH J S. Dissolving feather keratin using sodium sulfide for bio-polymer applications[J]. Journal of Polymers and the Environment, 2011, 19(4): 995-1004.
doi: 10.1007/s10924-011-0365-6
[22] HEBERLE J. Infrared spectroscopy of proteins[J]. Advances in Polymer Science, 2004, 114(1): 43-121.
[23] WANG D, YANG X H, TANG R C, et al. Extraction of keratin from rabbit hair by a deep eutectic solvent and its characterization[J]. Polymers, 2018, 10(9): 993.
doi: 10.3390/polym10090993
[24] 尹燕霞, 向本琼, 佟丽. 荧光光谱法在蛋白质研究中的应用[J]. 实验技术与管理, 2010, 27(2): 33-40.
YIN Yanxia, XIANG Benqiong, TONG Li. The application of studying fluorescence spectroscopy on protein[J]. Experimental Technology and Management, 2010, 27(2): 33-40.
[25] 张静, 高煊, 金亮, 等. 基于荧光数据计算蛋白质-配体结合常数的方程的对比及应用研究[J]. 光谱学与光谱分析, 2020, 40(11): 180-184.
ZHANG Jing, GAO Xuan, JIN Liang, et al. Comparisons and applications of functional equations for the calculation of the protein-ligand binding constant based on fluorescence spectral data[J]. Spectroscopy and Spectral Analysis, 2020, 40(11): 180-184.
[26] WANG X, SHI Z, ZHAO Q, et al. Study on the structure and properties of biofunctional keratin from rabbit hair[J]. Materials, 2021, 14(2): 379.
doi: 10.3390/ma14020379
[1] 朱兰芳, 白洁, 周吟澄, 侯成伟. 超声波处理对涤纶织物聚氨酯涂层中4,4'-二氨基二苯甲烷的影响[J]. 纺织学报, 2021, 42(11): 124-128.
[2] 丁梦瑶, 戴梦男, 李蒙, 刘苹, 徐晶晶, 王建南. 不同分子质量丝素蛋白的分离与表征[J]. 纺织学报, 2021, 42(07): 46-53.
[3] 元伟, 姚勇波, 张玉梅, 王华平. 制备Lyocell纤维用纤维素浆粕的碱性酶处理工艺[J]. 纺织学报, 2020, 41(07): 1-8.
[4] 赵亚奇, 郭雯静, 杜玲枝, 赵振新, 赵海鹏. 自由基引发剂制备高相对分子质量聚丙烯腈研究进展[J]. 纺织学报, 2020, 41(04): 174-180.
[5] 潘伟楠, 相恒学, 翟功勋, 倪明达, 沈家广, 朱美芳. 共聚酰胺6/66相对分子质量对其结晶和流变性能的影响[J]. 纺织学报, 2019, 40(09): 8-14.
[6] 李洋, 张元明, 姜伟, 张建明, 王思社, 苏建军, 韩光亭. 茜草植物染料染色莫代尔纤维的超声波处理[J]. 纺织学报, 2019, 40(04): 83-89.
[7] 李博, 姚金波, 牛家嵘, 王乐, 冯懋, 孙艳丽. 采用还原剂-甲酸法溶解制备羊毛角蛋白质溶液[J]. 纺织学报, 2019, 40(03): 1-7.
[8] 王晓春 闫金龙 张丽平 赵国樑 张健飞. 超高分子质量聚乙烯纤维分散染料染色性能[J]. 纺织学报, 2017, 38(11): 84-90.
[9] 邢京京 钱晓明. 织物的防刺机制及刀具形状对防刺性能的影响[J]. 纺织学报, 2017, 38(08): 55-61.
[10] 海滇 李树锋 丁晓 韩永兴 邓飞燕 张艳 程博闻. 高分子质量聚丙烯腈基碳纳米纤维的制备[J]. 纺织学报, 2016, 37(3): 1-5.
[11] 翁浦莹 康凌峰 孔春凤 李艳清 祝成炎. 组合式三维机织复合材料的制备及其抗高速冲击性能[J]. 纺织学报, 2016, 37(3): 60-65.
[12] 高利超 祝志峰 刘立超 徐珍珍. 聚氧乙烯相对分子质量对预氧化聚丙烯腈纤维短纤经纱上浆性能的影响[J]. 纺织学报, 2016, 37(09): 78-83.
[13] 刘梅 刘雄 陈世昌 吕汪洋 李楠 陈文兴. 联合超高效聚合物色谱和激光光散射法的聚酯分子质量及其分布测定[J]. 纺织学报, 2016, 37(05): 11-16.
[14] 赵敏 赵睿昕 沈永明 彭定元. CFR嵌片对超高分子质量聚乙烯多层复合织物防爆性能的影响[J]. 纺织学报, 2014, 35(3): 37-0.
[15] 洪剑寒 潘志娟 李敏 姚穆. UHMWPE/PANI复合导电纤维的制备及其性能[J]. 纺织学报, 2013, 34(2): 34-39.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!