纺织学报 ›› 2022, Vol. 43 ›› Issue (11): 203-211.doi: 10.13475/j.fzxb.20210309409
CAO Congcong1, TANG Longshi2, LIU Yuanjun1(), ZHAO Xiaoming1
摘要:
为深入了解无机抗菌剂的优缺点,制备性能更加优异的抗菌织物,对国内外相关研究进展进行了综述。分析了金属型和光催化型无机抗菌剂的抗菌机制,介绍了银系、铜系、锌系以及复合型的无机抗菌剂在纺织品领域的研究进展。指出:与其他类型的抗菌剂相比,无机抗菌剂具有广谱性强、不易使细菌产生耐药性等优点,但是在实际应用中也存在着一些问题,如银系抗菌剂价格昂贵;铜系抗菌剂颜色较深;锌系抗菌剂抗菌效果较弱等,通过与其他抗菌剂进行复合可以制备性能优异的复合抗菌织物,未来的研究方向应该是开发具有功能复合化、智能化、舒适性好等特性的多功能抗菌织物。
中图分类号:
[1] | 辜经纬. 抗菌整理剂的设计合成及其在纺织品上的应用[D]. 深圳: 深圳大学, 2019: 13-14. |
GU Jingwei. Design and synthesis of antibacterial finishing agents and its application on fabrics[D]. Shenzhen: Shenzhen University, 2019: 13-14. | |
[2] | 包钰婷. 抗菌纺织品的发展现状[J]. 纺织报告, 2020, 39(8): 12-13. |
BAO Yuting. Development status of antibacterial textiles[J]. Textile Reports, 2020, 39(8): 12-13. | |
[3] | 贾琳, 王西贤, 陶文娟, 等. 聚丙烯腈抗菌复合纳米纤维膜的制备及其抗菌性能[J]. 纺织学报, 2020, 41(6): 14-20. |
JIA Lin, WANG Xixian, TAO Wenjuan, et al. Preparation and antibacterial property of polyacrylonitrile antibacterial composite nanofiber membranes[J]. Journal of Textile Research, 2020, 41(6): 14-20. | |
[4] | 麻晓霞, 裴阳阳, 雷云, 等. 负载型无机抗菌材料的研究进展[J]. 功能材料, 2017, 48 (9): 9038-9042. |
MA Xiaoxia, PEI Yangyang, LEI Yun, et al. Research progress of supported inorganic antibacterial mater-ials[J]. Journal of Functional Materials, 2017, 48(9): 9038-9042. | |
[5] | 孙晓萱, 高建新, 李杭, 等. 金属抗菌机理的研究进展[J]. 功能材料, 2020, 51(9): 9066-9071. |
SUN Xiaoxuan, GAO Jianxin, LI Hang, et al. Research progress on antimicrobial mechanism of metals[J]. Journal of Functional Materials, 2020, 51(9): 9066-9071. | |
[6] |
ZHANG S, YANG C, REN G, et al. Study on behaviour and mechanism of Cu2+ion release from Cu bearing antibacterial stainless steel[J]. Materials Technology, 2015, 30(B2): B126-B132.
doi: 10.1179/1753555714Y.0000000236 |
[7] | 裴阳阳. Cu2+/ZnO负载型抗菌材料的制备及抗菌性能研究[D]. 银川: 宁夏大学, 2017: 17-19. |
PEI Yangyang. Preparation and antibacterial properties of Cu2+/ZnO supported antibacterial materials[D]. Yinchuan: Ningxia University, 2017: 17-19. | |
[8] | 王晓岚. 金属离子的抗菌性能及其抗菌机理研究[D]. 广州: 华南理工大学, 2015: 19-22. |
WANG Xiaolan. Study on antibacterial activity and mechanism of metal ions[D]. Guangzhou: South China University of Technology, 2015: 19-22. | |
[9] | 王小娟. 抗菌剂的种类及其在纺织品上的应用[J]. 纺织科技进展, 2017(6): 21-24. |
WANG Xiaojuan. Types of antibacterial agents and their application in textiles[J]. Progress in Textile Science & Technology, 2017(6): 21-24. | |
[10] | 马超, 吴瑛. 抗菌剂抗菌机理简述[J]. 中国酿造, 2016, 35(1): 5-9. |
MA Chao, WU Ying. Antibacterial mechanism of antibacterial agents[J]. China Brewing, 2016, 35(1): 5-9. | |
[11] | 陈美梅, 郭荣辉. 抗菌材料的研究进展[J]. 纺织科学与工程学报, 2019, 36(1): 153-157. |
CHEN Meimei, GUO Ronghui. Research progress of antibacterial materials[J]. Journal of Textile Science and Engineering, 2019, 36(1): 153-157. | |
[12] | 龚兰轩. Cu/ZnO-SiO2复合抗菌改性聚酯纤维的制备及其性能研究[D]. 上海: 东华大学, 2020: 15-16. |
GONG Lanxuan. Preparation and properties of Cu/ZnO-SiO2 composite antibacterial modified polyester fiber[D]. Shanghai: Donghua University, 2020: 15-16. | |
[13] | 王瑶, 王瑜, 程昱, 等. 纳米银粒径与抗细菌性能的关系[J]. 中国皮革, 2016, 45(5):1-4. |
WANG Yao, WANG Yu, CHENG Yu, et al. Antibacterial properties of different sizes of nano- sliver to bacteria[J]. China Leather, 2016, 45(5): 1-4. | |
[14] |
SHE B X, WAN X J, TANG J N, et al. Size-and morphology-dependent antibacterial properties of cuprous oxide nanoparticle and their synergistic antibacterial effect[J]. Science of Advanced Materials, 2016, 8(5): 1074-1078.
doi: 10.1166/sam.2016.2696 |
[15] | 金万慧, 梅帆, 何力. 纳米银抗菌防臭纺织品的检测及银的释放行为[J]. 印染助剂, 2021, 38(12): 57-60. |
JIN Wanhui, MEI Fan, HE Li. Release of nano sliver in the antibacterial and deodorization textiles[J]. Textile Auxiliaries, 2021, 38(12): 57-60. | |
[16] | UREYEN M E, ASLAN C. Determination of silver release from antibacterial finished cotton and polyester fabrics into water[J]. Journal of The Textile Institute, 2017, 108(7): 1128-1135. |
[17] | 张艳艳, 詹璐瑶, 王培, 等. 用无机纳米粒子制备耐久性抗菌棉织物的研究进展[J]. 纺织学报, 2020, 41(11): 174-180. |
ZHANG Yanyan, ZHAN Luyao, WANG Pei, et al. Research progress in preparation of durable antibacterial cotton fabrics with inorganic nanoparticles[J]. Journal of Textile Research, 2020, 41(11): 174-180.
doi: 10.1177/004051757104100215 |
|
[18] | 崔继方, 吴卫华. 银系无机抗菌剂的发展及应用研究[J]. 陶瓷, 2016(9): 9-12. |
CUI Jifang, WU Weihua. Development of Ag-type inorganic antibacterial agents and its application[J]. Ceramics, 2016(9):9-12. | |
[19] | 徐思峻. 载银粘胶纤维的制备及其吸附释放性能研究[D]. 苏州: 苏州大学, 2013: 5-9. |
XU Sijun. Fabrication of silver treated viscose fiber and evaluation of their adsorption and release proper-ties[D]. Suzhou: Soochow University, 2013: 5-9. | |
[20] | 沈金科. 抗菌PTT纤维的制备及性能研究[D]. 杭州: 浙工理工大学, 2014: 4-5. |
SHEN Jinke. Preparation and properties studies of antibacterial poly(trimethylene terephthalate) fila-ment[D]. Hangzhou: Zhejiang Sci-Tech University, 2014: 4-5. | |
[21] | 朱炯霖, 李红, 秦圆, 等. 棉织物的纳米银多功能整理[J]. 精细化工, 2020, 37(6): 1274-1281. |
ZHU Jionglin, LI Hong, QIN Yuan, et al. Nanosilver multifunctional finishing of cotton fabric[J]. Fine Chemicals, 2020, 37(6): 1274-1281. | |
[22] | 赵兵, 黄小萃, 祁宁, 等. 基于共价结合的纳米银抗菌棉织物研究进展[J]. 纺织学报, 2020, 41(3): 188-196. |
ZHAO Bing, HUANG Xiaocui, QI Ning, et al. Research progress of antibacterial cotton fabric treated with silver nanoparticles based on covalent bond[J]. Journal of Textile Research, 2020, 41(3): 188-196. | |
[23] |
ZHANG D S, CHEN L, ZANG C F, et al. Antibacterial cotton fabric grafted with silver nanoparticles and its excellent laundering durability[J]. Carbohydrate Polymers, 2013, 92(2): 2088-2094.
doi: 10.1016/j.carbpol.2012.11.100 pmid: 23399262 |
[24] |
WU Y P, YANG Y, ZHANG Z J, et al. Fabrication of cotton fabrics with durable antibacterial activities finishing by Ag nanoparticles[J]. Textile Research Journal, 2019, 89(5): 867-880.
doi: 10.1177/0040517518758002 |
[25] | 孙通, 李双燕, 崔振华, 等. 真丝织物的氯菊酯纳米银抗菌整理[J]. 印染, 2021, 47(2): 12-16. |
SUN Tong, LI Shuangyan, CUI Zhenhua, et al. Antibacterial finishing of silk fabric with permethrin-capped nano-silver[J]. China Dyeing & Finishing, 2021, 47(2): 12-16. | |
[26] | 张艳, 姚平, 周谨, 等. 纳米银粒子的原位合成及对真丝织物的功能化整理[J]. 上海纺织科技, 2018, 46(9): 18-20,28. |
ZHANG Yan, YAO Ping, ZHOU Jin, et al. Insitu synthesis of silver nanoparticles and its application for silk functionalization[J]. Shanghai Textile Science & Technology, 2018, 46(9): 18-20,28. | |
[27] |
RUPARELIA J R, CHATTERIEE A K, DUTTAGUPTA S P, et al. Strain specificity in antimicrobial activity of silver and copper nanoparticles[J]. Acta Biomaterialia, 2008, 4(3): 707-716.
doi: 10.1016/j.actbio.2007.11.006 pmid: 18248860 |
[28] |
REN G G, HU D W, CHENG E W C, et al. Characterisation of copper oxide nanoparticles for antimicrobial applications[J]. International Journal of Antimicrobial Agents, 2009, 33(6): 587-590.
doi: 10.1016/j.ijantimicag.2008.12.004 pmid: 19195845 |
[29] |
ALZAHRANI K E, NIAZY A A, ALSWIELEH A M, et al. Antibacterial activity of trimetal (CuZnFe) oxide nanoparticles[J]. International Journal of Nanomedicine, 2018, 13: 77-87.
doi: 10.2147/IJN.S154218 pmid: 29317817 |
[30] |
WU W T, ZHAO W J, WU Y H, et al. Antibacterial behaviors of Cu2O particles with controllable morphologies in acrylic coatings[J]. Applied Surface Science, 2019, 465: 279-287.
doi: 10.1016/j.apsusc.2018.09.184 |
[31] |
VALODKAR M, MODI S, PAL A, et al. Synthesis and anti-bacterial activity of Cu, Ag and Cu-Ag alloy nanoparticles: a green approach[J]. Materials Research Bulletin, 2011, 46(3): 384-389.
doi: 10.1016/j.materresbull.2010.12.001 |
[32] |
KUDZIN M H, MROZINSKA Z, KACZMAREK A, et al. Deposition of copper on poly(lactide) non-woven fabrics by magnetron sputtering-fabrication of new multi-functional, antimicrobial composite materials[J]. Materials, 2020. DOI:10.3390/ma13183971.
doi: 10.3390/ma13183971 |
[33] | 槐向兵, 黄磊. 铜离子改性聚丙烯腈织物的抗菌性能研究[J]. 棉纺织技术, 2019, 47(3): 31-34. |
HUAI Xiangbing, HUANG Lei. Antibacterial property study of copper modified polyacrylonitrile fabric[J]. Cotton Textile Technology, 2019, 47(3): 31-34. | |
[34] |
XU Q B, GU J Y, ZHAO Y, et al. Antibacterial cotton fabric with enhanced durability prepared using L-cysteine and silver nanoparticles[J]. Fibers and Polymers, 2017, 18(11): 2204-2211.
doi: 10.1007/s12221-017-7567-z |
[35] |
XU Q B, DUAN P P, ZHANG Y Y, et al. Double protect copper nanoparticles loaded on lcysteine modified cotton fabric with durable antibacterial properties[J]. Fibers and Polymers, 2018, 19(11): 2324-2334.
doi: 10.1007/s12221-018-8621-1 |
[36] |
TURAKHIA B, DIVAKARA M B, SANTOSH M S, et al. Green synthesis of copper oxide nanoparticles: a promising approach in the development of antibacterial textiles[J]. Journal of Coatings Technology and Research, 2020, 17(2): 531-540.
doi: 10.1007/s11998-019-00303-5 |
[37] | 周馨悦, 徐井华, 刘星雨, 等. 纳米氧化锌在抗菌材料中的应用[J]. 云南化工, 2019, 46(4): 144-145. |
ZHOU Xinyue, XU Jinghua, LIU Xingyu, et al. Application of nano zinc oxide in antimicrobial mater-ials[J]. Yunnan Chemical Technology, 2019, 46(4): 144-145. | |
[38] |
KUMAR R, UMAR A, KUMAR G, et al. Antimicrobial properties of ZnO nanomaterials: a review[J]. Ceramics International, 2017, 43(5): 3940-3961.
doi: 10.1016/j.ceramint.2016.12.062 |
[39] |
GHARPURE S, ANKAMWAR B. Synthesis and Antimicrobial properties of Zinc oxide nanoparticles[J]. Journal of Nanoscience and Nanotechnology, 2020, 20(10): 5977-5996.
doi: 10.1166/jnn.2020.18707 pmid: 32384943 |
[40] |
KEAWKHONG N, SRIPANOM L, KAEWCHUAY N, et al. Synthesis and characterisation of ZnO nanoparticles for production of antimicrobial textiles[J]. Advanced Materials Research, 2015, 1131: 75-78.
doi: 10.4028/www.scientific.net/AMR.1131.75 |
[41] | 冯俊丹, 崔振华, 程德亮, 等. 纳米氧化锌对黏胶织物的抗菌防紫外整理研究[J]. 针织工业, 2020(11): 24-28. |
FENG Jundan, CUI Zhenhua, CHENG Deliang, et al. Antibacterial and UV-resistant finishing of viscose fabric with nano-ZnO[J]. Knitting Industries, 2020(11): 24-28. | |
[42] |
NOORIAN S A, HEMMATINEJAD N, NAVARRO J A R. Ligand modified cellulose fabrics as support of zinc oxide nanoparticles for UV protection and antimicrobial activities[J]. International Journal of Biological Macromolecules, 2020, 154: 1215-1226.
doi: S0141-8130(19)36606-1 pmid: 31730954 |
[43] | 李丽艳, 郑敏, 常朱宁子, 等. 纳米氧化锌原位改性涤纶染色及抗菌性能研究[J]. 针织工业, 2020(12): 36-39. |
LI Liyan, ZHENG Min, CHANG Zhuningzi, et al. Dyeing and anti-bacterial properties of in-situ modified polyester with nano-zinc oxide[J]. Knitting Industries, 2020(12): 36-39. | |
[44] |
AGRAWAL N, TAN J S J, LOW P S, et al. Green synthesis of robust superhydrophobic antibacterial and UV-blocking cotton fabrics by a dual-stage silanization approach[J]. Advanced Materials Interfaces, 2019. DOI:10.1002/admi.201900032.
doi: 10.1002/admi.201900032 |
[45] | 翟丽莎, 王宗垒, 周敬伊, 等. 纺织用抗菌材料及其应用研究进展[J]. 纺织学报, 2021, 42(9): 170-179. |
ZHAI Lisha, WANG Zonglei, ZHOU Jingyi, et al. Research progress of antibacterial materials for textiles and their applications[J]. Journal of Textile Research, 2021, 42(9): 170-179. | |
[46] | 孙璇. 疏水性纤维的石墨烯整理及其表面功能化[D]. 天津: 天津工业大学, 2019: 3-4. |
SUN Xuan. Graphene finishing and surface functionalization of hydrophobic fibers[D]. Tianjin: Tiangong University, 2019: 3-4. | |
[47] | 张勇, 李桢. 石墨烯及氧化石墨烯在纺织领域的抗菌应用[J]. 棉纺织技术, 2020, 48(9): 75-79. |
ZHANG Yong, LI Zhen. Antibacterial application of graphene and graphene oxide in textile field[J]. Cotton Textile Technology, 2020, 48(9): 75-79. | |
[48] | 黄小云, 陈林云, 吴玉峰, 等. 天然抗菌防螨针织面料的开发[J]. 针织工业, 2018(6): 27-30. |
HUANG Xiaoyun, CHEN Linyun, WU Yufeng, et al. Development of natural antibacterial anti-mite knitted fabric[J]. Knitting Industries, 2018(6): 27-30. | |
[49] |
OUADIL B, AMADINE O, ESSAMLALI Y, et al. A new route for the preparation of hydrophobic and antibacterial textiles fabrics using Ag-loaded graphene nanocomposite[J]. Colloids and Surfaces A-Physicochemical and Engineering Aspects, 2019. DOI:10.1016/j.colsurfa.2019.123713.
doi: 10.1016/j.colsurfa.2019.123713 |
[50] | 梁小玲. 高性能石墨烯材料在纺织领域的应用进展[J]. 纺织科技进展, 2020(7):26-29. |
LIANG Xiaoling. Application progress of high-performance graphene materials in textile field[J]. Progress in Textile Science & Technology, 2020(7): 26-29. | |
[51] | 卜聃琳. 高分子改性氧化石墨烯及其水凝胶复合材料的制备和抗菌性能研究[D]. 长春: 长春工业大学, 2021: 5-6. |
BU Danlin. Preparation and antibacterial properties of polymer modified graphene oxide and itshydrogel composites[D]. Changchun: Changchun University of Technology, 2021: 5-6. | |
[52] |
YAGHOUBIDOUST F, SALIMI E. A simple method for the preparation of antibacterial cotton fabrics by coating graphene oxide nanosheets[J]. Fibers and Polymers, 2019, 20(6): 1155-1160.
doi: 10.1007/s12221-019-8540-1 |
[53] | GAO N, CHEN Y J, JIANG J. Ag@Fe2O3-GO nanocomposites prepared by a phase transfer method with long-term antibacterial property[J]. ACS Applied Materials & Interfaces, 2013, 5(21): 11307-11314. |
[54] |
YU W, LI X, HE J X, et al. Graphene oxide-silver nanocomposites embedded nanofiber core-spun yarns for durable antibacterial textiles[J]. Journal of Colloid and Interface Science, 2021, 584:164-173.
doi: 10.1016/j.jcis.2020.09.092 pmid: 33069016 |
[55] | ANSARI M, SAJJADI S A, SAHEBIAN S, et al. Photocatalytic and antibacterial activity of silver/titanium dioxide/zinc oxide nanoparticles coated on cotton fabrics[J]. Chemistry Select, 2020, 5(27): 8370-8378. |
[56] |
WANG K, MA Q, ZHANG Y M, et al. Ag NPs-assisted synthesis of stable Cu NPs on PET fabrics for antibacterial and electromagnetic shielding performance[J]. Polymers, 2020. DOI:10.3390/polym12040783.
doi: 10.3390/polym12040783 |
[1] | 方寅春, 陈吕鑫, 李俊伟. 阻燃超疏水涤/棉混纺织物的制备及其性能[J]. 纺织学报, 2022, 43(11): 113-118. |
[2] | 杨辉宇, 周敬伊, 段子健, 徐卫林, 邓波, 刘欣. 原子层沉积在纺织品表面多功能改性研究进展[J]. 纺织学报, 2022, 43(09): 195-202. |
[3] | 熊坦平, 谭飞, 黄成, 阎克路, 邹妮, 王政, 叶敬平, 纪柏林. 氯胺接枝涤纶/锦纶超细纤维针织物的抗菌性能[J]. 纺织学报, 2022, 43(08): 101-106. |
[4] | 张广知, 方进. 生物质环保阻燃剂PD的制备及其阻燃性能[J]. 纺织学报, 2022, 43(07): 90-96. |
[5] | 南清清, 曾庆红, 袁竟轩, 王晓沁, 郑兆柱, 李刚. 抗菌功能纺织品的研究进展[J]. 纺织学报, 2022, 43(06): 197-205. |
[6] | 黄益婷, 程献伟, 关晋平, 陈国强. 磷/氮阻燃剂对涤纶/棉混纺织物的阻燃整理[J]. 纺织学报, 2022, 43(06): 94-99. |
[7] | 纪柏林, 王碧佳, 毛志平. 纺织染整领域支撑低碳排放的关键技术[J]. 纺织学报, 2022, 43(01): 113-121. |
[8] | 刘新华, 刘海龙, 方寅春, 严鹏, 侯广开. 聚乙烯亚胺/植酸层层自组装阻燃涤/棉混纺织物制备及其性能[J]. 纺织学报, 2021, 42(11): 103-109. |
[9] | 王志辉, 徐羽菲, 郭豪玉, 张康磊, 庞星辰, 聂小林, 诸葛健, 魏取福. 光动力抗菌技术在纺织品上的应用研究进展[J]. 纺织学报, 2021, 42(11): 187-196. |
[10] | 翟丽莎, 王宗垒, 周敬伊, 高冲, 陈凤翔, 徐卫林. 纺织用抗菌材料及其应用研究进展[J]. 纺织学报, 2021, 42(09): 170-179. |
[11] | 张姣姣, 李雨洋, 刘云, 董朝红, 朱平. 棉/粘胶混纺织物的阻燃抗菌整理[J]. 纺织学报, 2021, 42(07): 31-38. |
[12] | 杨宇晨, 覃小红, 俞建勇. 静电纺纳米纤维功能性纱线的研究进展[J]. 纺织学报, 2021, 42(01): 1-9. |
[13] | 姜兴茂, 刘奇, 郭琳. 二氧化硅包覆银铜纳米颗粒的结构及其抗菌性能[J]. 纺织学报, 2020, 41(11): 102-108. |
[14] | 张艳艳, 詹璐瑶, 王培, 耿俊昭, 付飞亚, 刘向东. 用无机纳米粒子制备耐久性抗菌棉织物的研究进展[J]. 纺织学报, 2020, 41(11): 174-180. |
[15] | 曾玉晖, 张亭亭, 王克作, 何力, 陈益人. 天然彩棉后整理加工中颜色稳定性的影响因素[J]. 纺织学报, 2020, 41(08): 45-49. |
|