纺织学报 ›› 2021, Vol. 42 ›› Issue (12): 125-130.doi: 10.13475/j.fzxb.20210400607

• 服装工程 • 上一篇    下一篇

人体局部皮肤的气流敏感性及其影响因素

张昭华1,2, 陈之瑞1, 李璐瑶1, 肖平1,2(), 彭浩然1, 张钰涵1   

  1. 1.东华大学 服装与艺术设计学院, 上海 200051
    2.东华大学 现代服装设计与技术教育部重点试验室, 上海 200051
  • 收稿日期:2021-04-06 修回日期:2021-09-02 出版日期:2021-12-15 发布日期:2021-12-29
  • 通讯作者: 肖平
  • 作者简介:张昭华(1977—),女,副教授,博士。主要研究方向为服装舒适性与功能。
  • 基金资助:
    国家自然科学基金项目(11602055);中央高校基本科研业务费专项资金资助项目(2232021G-08)

Airflow sensitivity of local human skin and its influencing factors

ZHANG Zhaohua1,2, CHEN Zhirui1, LI Luyao1, XIAO Ping1,2(), PENG Haoran1, ZHANG Yuhan1   

  1. 1. College of Fashion and Design, Donghua University, Shanghai 200051, China
    2. Key Laboratory of Clothing Design and Technology, Ministry of Education, Donghua University, Shanghai 200051, China
  • Received:2021-04-06 Revised:2021-09-02 Published:2021-12-15 Online:2021-12-29
  • Contact: XIAO Ping

摘要:

为探究人体不同体段皮肤对气流的敏感性差异及影响因素,测试了人体前胸、后背上、后背下、大腿前和大腿后5个体段在接受低于皮肤温度5 ℃、等于皮肤温度和高于皮肤温度5 ℃的气流刺激时,各体段的局部皮肤温度变化率以及主观气流强度感觉,应用韦伯分数分析各体段对气流的敏感性差异。结果表明:通风温度对人体气流敏感性有显著影响,当通风温度与局部皮肤温度相等时,皮肤气流敏感性最差,说明温度感受器对皮肤气流感知发挥重要作用;后背上部与大腿前部对热气流最敏感,而后背下部与大腿后部对冷气流最敏感,但各部位之间并未发现显著的统计学差异。

关键词: 皮肤温度, 气流敏感性, 通风服, 热感觉, 生理效应, 局部通风

Abstract:

In order to explore the influencing factors of airflow sensitivity for different human body segments, this study evaluated the local skin temperature change rate of each body segment and the subjective airflow intensity feeling of the front chest, upper back, lower back, front thigh and back thigh under the airflow stimuli at temperatures of 5 ℃ lower than, equal to and 5 ℃ higher than skin temperature, and the Weber fraction was used to analyze the sensitivity difference of each body segment to the airflow. The results show that the stimulating air temperature has a significant effect on the airflow sensitivity of the human body. When the stimulating air temperature is equal to the local skin temperature, the skin airflow sensitivity is the lowest, indicating that the temperature sensor plays an important role in the skin airflow perception. The upper back and the front thigh are most sensitive to the warm airflow, whereas the lower back and the back thigh are most sensitive to the cold airflow, although no significant statistical differences were found between the various body segments.

Key words: skin temperature, airflow sensitivity, ventilation garment, thermal sensation, physiological effect, local air movement

中图分类号: 

  • TS941.16

图1

供风装置组成示意图 1—离心风机;2—轴流风扇;3—翅片加热器;4—进风口;5—出风口与管道;6—保温箱。"

图2

吹风试验现场实拍图"

图3

Tsk-5 ℃前胸部吹风刺激数据拟合结果"

图4

差异阈值计算结果对比"

图5

韦伯分数计算结果对比"

图6

Tsk-5 ℃通风温度下各部位皮肤温度变化率"

图7

Tsk通风温度下各部位皮肤温度变化率"

图8

Tsk+5 ℃通风温度下各部位皮肤温度变化率"

图9

皮肤温度变化率绝对值与韦伯分数相关性分析"

[1] 郭新梅, 袁修干. 影响气冷式个体热防护装备致冷力的因素分析[J]. 宇航学报, 2010, 31(1):276-281.
GUO Xinmei, YUAN Xiugan. Analysis of factors affecting the cooling force of air-cooled individual thermal protection equipment[J]. Journal of Astronautics, 2010, 31(1):276-281.
[2] LAMPRET Ž, KRESE G, BUTALA V, et al. Impact of airflow temperature fluctuations on the perception of draught[J]. Energy & Buildings, 2018, 179:112-120.
[3] 范晓伟, 吴金河, 李志强, 等. 高温环境下头部局部送风热舒适性模拟研究[J]. 建筑热能通风空调, 2018, 37(11):42-46.
FAN Xiaowei, WU Jinhe, LI Zhiqiang, et al. Thermal comfort simulation of head local air supply in high temperature environment[J]. Building Thermal Energy, Ventilation and Air Conditioning, 2018, 37(11):42-46.
[4] GLITZ K J, SEIBEL U, ROHDE U, et al. Reducing heat stress under thermal insulation in protective clothing: microclimate cooling by a 'physiological' method[J]. Ergonomics, 2015, 58(8):1461-1469.
doi: 10.1080/00140139.2015.1013574
[5] 赵蒙蒙. 可调温织物与服装吸热效应评价研究[D]. 上海: 东华大学, 2013:1-160.
ZHAO Mengmeng. Study on evaluation of heat absorption effect of adjustable temperature fabric and clothing[D]. Shanghai: Donghua University, 2013:1-160.
[6] LU Y, WEI F, LAI D, et al. A novel personal cooling system (PCS) incorporated with phase change mate-rials (PCMS) and ventilation fans[J]. Extreme Physiology & Medicine, 2015, 52(S1):137-146.
[7] FANGER P O, CHRISTENSEN N K. Perception of draught in ventilated spaces[J]. Ergonomics, 1986, 29(2):215-235.
doi: 10.1080/00140138608968261
[8] VERRILLO R T. Effect of contactor area on the vibrotactile threshold[J]. Journal of the Acoustical Society of America, 1963, 35:1962-1966.
doi: 10.1121/1.1918868
[9] WEINSTEIN S. Intensive and extensive aspects of tactile sensitivity as a function of body part, sex, and latera-lity[C]// First International Symposium on Skin Senses. Florida: Florida Staste University, 1968: 195-222.
[10] UGURSAL A, CULP C H. The effect of temperature, metabolic rate and dynamic localized airflow on thermal comfort[J]. Applied Energy, 2013, 111:64-73.
doi: 10.1016/j.apenergy.2013.04.014
[11] HOMMA L. Thermal sensation of local airflows with different temperatures and velocities: comparison between summer and winter[J]. ASHRAE Transactions, 2005, 111(1):123-131.
[12] 宋文馨. 活动量和气流运动对人体热舒适的影响[D]. 广州: 广东工业大学, 2019:79-81.
SONG Wenxin. Influence of activity and airflow on human thermal comfort[D]. Guangzhou: Guangdong University of Technology, 2019:79-81.
[13] 郭秀艳. 实验心理学[M]. 北京: 人民教育出版社, 2004:301-307.
GUO Xiuyan. Experimental psychology [M]. Beijing: People's Education Press, 2004:301-307.
[1] 吴国珊, 刘何清, 吴世先, 游波, 宋小鹏. 不同环境下个体通风服的制冷量[J]. 纺织学报, 2021, 42(10): 139-145.
[2] 牛梦雨, 潘姝雯, 戴宏钦, 吕凯敏. 医用防护服的热湿舒适性与人体疲劳度的关系[J]. 纺织学报, 2021, 42(07): 144-150.
[3] 赵敬德, 丁义冉, 张春红. 室外高温环境下通风服装的传热模型与实验研究[J]. 纺织学报, 2021, 42(06): 153-159.
[4] 张昭华, 李璐瑶, 安瑞平. 管道式通风服头部与躯干部位的热湿舒适性评价[J]. 纺织学报, 2020, 41(08): 88-94.
[5] 黄倩倩, 李俊. 环境温度突变时人体热感觉变化机制研究进展[J]. 纺织学报, 2020, 41(04): 188-194.
[6] 郑晴, 王宏付, 柯莹, 李爽. 相变降温矿工服的设计与评价[J]. 纺织学报, 2020, 41(03): 124-129.
[7] 赵蒙蒙, 柯莹, 王发明, 李俊. 通风服热舒适性研究现状与展望[J]. 纺织学报, 2019, 40(03): 183-188.
[8] 苗苗 鲁虹 程梦琪. 运动前后人体体表温度变化与主观热感觉评定[J]. 纺织学报, 2018, 39(04): 116-122.
[9] 赵蒙蒙 宋晓霞. 通风服装对人体热舒适的影响[J]. 纺织学报, 2017, 38(10): 94-97.
[10] 唐香宁 张昭华 李俊 李璐瑶 冯姝元 . 人体皮肤湿感觉的研究进展[J]. 纺织学报, 2017, 38(09): 174-180.
[11] 许静娴 李俊 刘慧娟 王云仪. 热调节暖体假人在着装舒适性评价中的应用现状[J]. 纺织学报, 2017, 38(07): 164-172.
[12] 杨瑞梁 周义德 徐子龙. 棉纺织车间的热舒适性研究[J]. 纺织学报, 2015, 36(03): 54-57.
[13] 柯莹 Havenith George 李俊 李小辉. 服装整体及其局部的通风测量方法[J]. 纺织学报, 2014, 35(7): 134-0.
[14] 王云仪, 赵蒙蒙. 高温强辐射下相变降温背心的热调节作用客观测评[J]. 纺织学报, 2012, 33(5): 101-105.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 赵良臣;闻涛. 旋转组织设计的数学原理[J]. 纺织学报, 2003, 24(06): 33 -34 .
[2] 曹建达;顾小军;殷联甫. 用BP神经网络预测棉织物的手感[J]. 纺织学报, 2003, 24(06): 35 -36 .
[3] 【作者单位】:中国纺织工程学会秘书处【分类号】:+【DOI】:cnki:ISSN:0-.0.00-0-0【正文快照】:  香港桑麻基金会设立的“桑麻纺织科技奖” 0 0 年提名推荐工作;在纺织方面院士;专家和有关单位的大力支持下;收到了 个单位 (人 )推荐的 位候选人的. 2003年桑麻纺织科技奖获奖名单[J]. 纺织学报, 2003, 24(06): 107 .
[4] 【分类号】:Z【DOI】:cnki:ISSN:0-.0.00-0-0【正文快照】:  一;纺 纱模糊控制纺纱张力的研究周光茜等 ( - )………………原棉含杂与除杂效果评价方法的研究于永玲 ( - )……网络长丝纱免浆免捻功能的结构表征方法李栋高等 ( - )……………. 2003年纺织学报第二十四卷总目次[J]. 纺织学报, 2003, 24(06): 109 -620 .
[5] 邓炳耀;晏雄. 热压对芳纶非织造布机械性能的影响[J]. 纺织学报, 2004, 25(02): 103 -104 .
[6] 张治国;尹红;陈志荣. 纤维前处理用精练助剂研究进展[J]. 纺织学报, 2004, 25(02): 105 -107 .
[7] 秦元春. 纺织工业发展方向初探[J]. 纺织学报, 2004, 25(02): 108 -110 .
[8] 高伟江;魏文斌. 纺织业发展的战略取向——从比较优势到竞争优势[J]. 纺织学报, 2004, 25(02): 111 -113 .
[9] 刘从九. 我国纺织品绿色国际竞争力[J]. 纺织学报, 2004, 25(02): 116 -118 .
[10] 冯宪. 漫谈未来服装的发展方向[J]. 纺织学报, 2004, 25(02): 119 -120 .