纺织学报 ›› 2022, Vol. 43 ›› Issue (11): 188-194.doi: 10.13475/j.fzxb.20210403607

• 综合述评 • 上一篇    下一篇

纺丝过程中非接触式纤维张力检测技术研究进展

张东剑1, 甘学辉1(), 杨崇倡1, 韩阜益2, 刘香玉1, 谈渊1, 廖壑1, 王松林3   

  1. 1.东华大学 机械工程学院, 上海 201620
    2.东华大学 资产管理处, 上海 201620
    3.浙江恒逸石化有限公司, 浙江 杭州 311215
  • 收稿日期:2021-04-13 修回日期:2021-11-26 出版日期:2022-11-15 发布日期:2022-12-26
  • 通讯作者: 甘学辉
  • 作者简介:张东剑(1991—),男,博士生。主要研究方向为高端纺织装备智能检测技术。
  • 基金资助:
    中央高校基本科研业务费专项资金学科交叉(理工科)重点计划项目(21D110323);东华大学-恒逸石化联合实验室资助项目(103200167)

Research progress in non-contact fiber tension detection technology in spinning process

ZHANG Dongjian1, GAN Xuehui1(), YANG Chongchang1, HAN Fuyi2, LIU Xiangyu1, TAN Yuan1, LIAO He1, WANG Songlin3   

  1. 1. College of Mechanical Engineering, Donghua University, Shanghai 201620, China
    2. Asset Management Division, Donghua University, Shanghai 201620, China
    3. Zhejiang Hengyi Petrochemical Co., Ltd., Hangzhou, Zhejiang 311215, China
  • Received:2021-04-13 Revised:2021-11-26 Published:2022-11-15 Online:2022-12-26
  • Contact: GAN Xuehui

摘要:

纤维制备过程中张力变化对纤维产品性能具有重要影响。目前产业界对于纺丝过程中纤维张力的检测仍以接触式为主,往往会造成丝束损伤,严重影响产品的质量稳定性和使用寿命。为此,结合纺织工业的发展趋势,介绍了接触式纤维张力检测技术的特点及其局限性,尤其是高速纺丝对纤维张力检测的需求,就国内外研究中较热门的基于图像处理的非接触式张力检测进行综述,认为图像处理技术由于采样频率限制以及庞大的数据运算等原因影响检测的实时性和有效性。最后,从高速纺丝的特点、纤维张力检测要求等角度,论述了一种基于激光多普勒测振的非接触式纤维张力实时检测技术,以期为研究纺丝过程中的纤维张力变化提供有效手段。

关键词: 纺丝过程, 非接触, 纤维张力检测, 图像处理, 激光多普勒测振

Abstract:

Tension changes during fiber preparation have a significant impact on fiber product properties. Currently, the detection of fiber tension in the spinning process is still based on the contact method, which often causes fiber damage and seriously affects the quality stability, and service life of products. Therefore, combined with the development trend of the textile industry, the characteristics and limitations of contact fiber tension detection technology were introduced, especially the demand for high-speed spinning for fiber tension detection, the non-contact tension detection based on image processing, which are popularly researched, was summarized. The real-time and effectiveness of the detection are affected by the image processing technology due to the acquisition frequency and huge data operation. A non-contact real-time fiber tension detection technology based on laser Doppler Vibrometer technology was discussed from the aspects of the characteristics of high-speed spinning and the requirements of fiber tension detection, so as to provide an effective means for the study of fiber tension changes in the spinning process.

Key words: spinning process, non-contact, fiber tension detection, image processing, laser Doppler Vibrometer

中图分类号: 

  • TS152.7

图1

图像边缘提取过程"

图2

振动特性张力检测法原理图 注:p为线密度,g/km;A为截面积,m2;T为张力,cN;v为牵伸速度,m/s。"

图3

长丝受力图"

图4

基于激光多普勒测振的纤维张力检测系统"

[1] MOHAJERANNI A, HUI S Q, MIRZABAEI M, et al. Amazing types, properties, and applications of fibres in construction materials[J]. Materials, 2019, 12(16): 2513-2524.
doi: 10.3390/ma12162513
[2] YANG R H, YUE W, WANG S Y, et al. Tension of rotor-spun composite yam during spinning process[J]. International Journal of Nonlinear Sciences & Numerical Simulation, 2009, 10(7): 903-906.
[3] 王华平, 胡学超, 王毅, 等. 纺程加张力对PET纤维结构形成的影响[J]. 合成纤维, 1992, 21(4): 8-13.
WANG Huaping, HU Xuechao, WANG Yi, et al. Effect of on-line stress on polyester fiber structure[J]. Synthetic Fiber in China, 1992, 21(4): 8-13.
[4] KUO C, HUANG C C, GAO T C, et al. Recognition of fault process conditions based on spinline tension in melt spinning[J]. Textile Research Journal, 2014, 84(14): 1549-1557.
doi: 10.1177/0040517514521117
[5] 吴绥菊, 季晓雷. 纺纱张力测试的新方法[J]. 纺织学报, 2002, 23(5): 18-20.
WU Suiju, JI Xiaolei. New method of spinning tension test[J]. Journal of Textile Research, 2002, 23(5): 18-20.
[6] 刘行, 缪旭红, 赵帅权. 纱线张力测试方法研究进展[J]. 棉纺织技术, 2015, 43(1): 78-82.
LIU Xing, LIAO Xuhong, ZHAO Shuaiquan. Research progress of yarn tension test method[J]. Cotton Textile Technology, 2015, 43(1): 78-82.
[7] ZHOU Q H, WEI T L, QIU Y P, et al. Prediction and optimization of chemical fiber spinning tension based on grey system theory[J]. Textile Research Journal, 2019, 89(15): 3067-3079.
doi: 10.1177/0040517518807439
[8] CHATTOPADHYAY S K, VENUGOPAL B. An experimental verification on existence of air-drag force influencing yarn tension during rotor spinning[J]. Research Journal of Textile and Apparel, 2020, 24(1): 84-96.
doi: 10.1108/RJTA-09-2019-0042
[9] PODSIEDLIK W, WOJTYSIAK J. Multi-barrier electromagnetic tensioner for control of yarn tension in processing[J]. Fibres & Textiles in Eastern Europe, 2006, 14(5): 125-128.
[10] XU Q, MEI S Q, ZHANG Z M. Measurement method of yarn tension based on CCD technology[J]. Advanced Materials Research, 2011, 230(232): 89-93.
[11] TANG Z X, FRASER W B, WANG X. Modelling yarn balloon motion in ring spinning[J]. Applied Mathematical Modelling, 2007, 7(31): 1397-1410.
[12] SCHMID B, ARX R V, BRAND P. Integration of the yarn tension sensor to improve efficiency[J]. International Fiber Journal, 2006, 3(21): 64-65.
[13] PREYBY K. Influence of changes in yarn twist on the dynamics of yarn motion during spinning on a ring spinning machine[J]. Fibres & Textiles in Eastern Europe 2008, 16(2): 23-26.
[14] HOSSAIN M, ABDKADER A, NOCKE A. Measurement methods of dynamic yarn tension in a ring spinning process[J]. Fibres & Textiles in Eastern Europe, 2016, 24(1): 36-43.
[15] CHEN X L, MEI S Q, CHEN X B. Non-contact measurement of yarn tension in spinning process[J]. Applied Mechanics & Materials, 2014, 722(1): 367-372.
[16] 陈振, 梅顺齐, 李臻. 基于MatLab图像处理技术的纱线气圈张力测量方法研究[J]. 纺织科技进展, 2015 3: 18-21.
CHEN Zhen, MEI Shunqi, LI Zhen. Research on the measurement method of the yarn balloon tension based on MATLAB image processing technology[J]. Progress in Textile Science & Technology, 2015, 3: 18-21.
[17] 谢正权, 王新厚. 非接触式纱线卷绕张力动态检测方法的研究[J]. 中国测试, 2009, 35(4): 111-114.
XIE Zhengquan, WANG Xinhou. Non-contact dynamic measurement of yarn tension in winding process[J]. China Measurement & Testing Technology, 2009, 35(4): 111-114.
[18] WANG Q, LU C, HUANG R, et al. Computer vision for yarn microtension measurement[J]. Applied Optics, 2016, 55(9): 2393-2398.
doi: 10.1364/AO.55.002393
[19] BRAUCHLER A, ZIEGLER P, EBERHARD P, et al. Examination of polarization coupling in a plucked musical instrument string via experiments and simulations[J]. Acta Acustica, 2020, 4(3): 9-16.
doi: 10.1051/aacus/2020008
[20] ZUO W, HU Z, AN Z, et al. LDV-based measurement of 2D dynamic stress fields in transparent solids[J]. Journal of Sound and Vibration, 2020, 476: 1-11.
[21] JACKSON D A, GARCIASOUTO J A, POSADAROMAN J E, et al. Calibration of laser Doppler vibrometer exploiting Bessel functions of the first kind[J]. Electronics Letters, 2015, 51(14): 1100-1102.
doi: 10.1049/el.2015.0972
[22] LI Y, VERSTUYFT S, YURTSENER G, et al. Miniaturized laser Doppler vibrometers integrated on silicon-on-insulator with thermo-optic serrodyne optical frequency shifter[C]// International Conference on Group IV Photonics. San Diego: IEEE, 2012: 221-229.
[23] ROTHBERG S J, HALKON B J, TTRABASSI M, et al. Radial vibration measurements directly from rotors using laser vibrometry: the effects of surface roughness, instrument misalignments and pseudo-vibration[J]. Mechanical Systems & Signal Processing, 2012, 33(1): 109-131.
[24] MAIO D D, MAGI F, SEVER I A. Damage monitoring of composite components under vibration fatigue using scanning laser doppler vibrometer[J]. Experimental Mechanics, 2018, 58(3): 499-514.
doi: 10.1007/s11340-017-0367-y
[25] RUEL S, CHAD E, MELO L, et al. Field testing of a 3D automatic target recognition and pose estimation algorithm[J]. Proc Spie, 2004, 5426(12): 102-111.
[26] 黄贞, 吴林富. 便携式激光远程语音监听装置设计[J]. 激光与光电子学进展, 2012, 49(12): 98-101.
HUANG Zhen, WU Linfu. Laser remote voice detection system[J]. Laser & Optoelectronics Progress, 2012, 49(12): 98-101.
[27] GARY E S. Optical heterodyne profilometry[J]. Applied Optics, 1981, 20(4): 610-618.
doi: 10.1364/AO.20.000610 pmid: 20309165
[28] HUANG C C. Optical Heterodyne profilometer[J]. Proceedings of SPIE: The International Society for Optical Engineering, 1984, 23(4): 65-69.
[29] PIECZONKA L, AMBROZINSKI L, STASZEWSKI W J, et al. Damage detection in composite panels based on mode-converted lamb waves sensed using 3D laser scanning vibrometer[J]. Optics & Lasers in Engineering, 2017, 99(12): 80-87.
[30] YEKUTIEL AVARGEL, COHEN I. Speech measurements using a laser Doppler vibrometer sensor: Application to speech enhancement[C]// Hands-free Speech Communication and Microphone Arrays (HSCMA). Edinburgh:IEEE, 2011: 109-114.
[31] WANG C H, PEREZ C, SWALWELL J, et al. Characterizing the pressure field in a modified microbubble flow cytometer: Using a laser Doppler vibrometer to validate the internal pressure[J]. The Journal of the Acoustical Society of America, 2015, 137(4): 2423-2424.
[32] KOROBOV A I, IZOSIMOVA M Y. Nonlinear lamb waves in a metal plate with defects[J]. Acoustical Physics, 2006, 52(5): 589-597.
doi: 10.1134/S1063771006050137
[33] LIN S, GUO H, XU J. Actively adjustable step-type ultrasonic horns in longitudinal vibration[J]. Journal of Sound & Vibration, 2018, 419(1): 367-379.
[34] GROVES K H, BONELLO P. Improved identification of squeeze-film damper models for aeroengine vibration analysis[J]. Tribology International, 2010, 43(9): 1639-1649.
doi: 10.1016/j.triboint.2010.03.010
[35] MAEDA A, HAYASHI T. Defect imaging from a remote distance by using scanning laser source technique with acoustic microphones[J]. Materials Transactions, 2018, 59(2): 320-323.
doi: 10.2320/matertrans.M2017326
[36] 晏春回. 激光相干测振信号处理技术研究[D]. 长春: 中国科学院大学, 2019: 4-6.
YAN Chunhui. Research on signal processing technology of laser coherent vibration measurement[D]. Changchun: Changchun Institute of Optics, 2019: 4-6.
[37] KRONEBERGER S K J, HARTSOUGH B R. Monitor for indirect measurement of cable vibration frequency and tension[J]. Transactions of the American Society of Agricultural Engineers, 1992, 35(1): 341-346.
doi: 10.13031/2013.28609
[38] VEDRINES M, GASSMANN V, KNITTEL D. Moving web-tension determination by out-of-plane vibration measurements using a laser[J]. IEEE Transactions on Instrumentation and Measurement, 2009, 58(1): 207-213.
doi: 10.1109/TIM.2008.928408
[39] 汤奥斐, 李淑娟, 李伦, 等. FAW加工过程线锯振动建模与实验验证[J]. 应用力学学报, 2018, 35(4): 750-756.
TANG Aofei, LI Shujuan, LI Lun, et al. Modeling and experimental verification of wire vibration for FAW cutting process[J]. Chinese Journal of Applied Mechanics, 2018, 35(4): 750-756.
[40] MA L, CHEN J, TANG W, et al. Vibration-based estimation of tension for an axially travelling web in roll-to-roll manufacturing[J]. Measurement Science & Technology, 2017, 29(1): 10.1088/1361-6501/aa9046.
doi: 10.1088/1361-6501/aa9046
[41] MA L, CHEN J, TANG W, et al. Transverse vibration and instability of axially travelling web subjected to non-homogeneous tension[J]. International Journal of Mechanical Sciences, 2017, 133(1): 752-758.
doi: 10.1016/j.ijmecsci.2017.09.047
[42] 马亮. 柔性基板卷到卷输送中横向振动建模与控制[D]. 武汉: 华中科技大学, 2018: 74-87.
MA Liang. Modeling and control study on the transverse vibration of an axially travelling flexible web in roll-to-roll manufacturing[D]. Wuhan: Huazhong University of Science and Technology, 2018: 74-87.
[43] ZHAO Z, LIU Y, GUO F, et al. Vibration control and boundary tension constraint of an axially moving string system[J]. Nonlinear Dynamics, 2017, 89(4): 2431-2440.
doi: 10.1007/s11071-017-3595-x
[44] LIN H, ZHOU C L, SHI J, et al. Transverse vibration of axially accelerating moving fabric: experiment and analysis[J]. Applied Mechanics & Materials, 2012, 226(228): 150-153.
[1] 安亦锦, 薛文良, 丁亦, 张顺连. 基于图像处理的纺织品耐摩擦色牢度评级[J]. 纺织学报, 2022, 43(12): 131-137.
[2] 袁嫣红, 曾洪铭, 茅木泉. 基于图像处理的选针器检测系统[J]. 纺织学报, 2022, 43(10): 176-182.
[3] 邓中民, 胡灏东, 于东洋, 王文, 柯薇. 结合图像频域和空间域的纬编针织物密度检测方法[J]. 纺织学报, 2022, 43(08): 67-73.
[4] 马运娇, 王蕾, 潘如如, 高卫东. 基于平面镜成像的纱线条干三维合成校准方法[J]. 纺织学报, 2022, 43(07): 55-59.
[5] 周其洪, 彭轶, 岑均豪, 周申华, 李姝佳. 基于机器视觉的细纱接头机器人纱线断头定位方法[J]. 纺织学报, 2022, 43(05): 163-169.
[6] 张荣根, 冯培, 刘大双, 张俊平, 杨崇倡. 涤纶工业长丝毛丝在线检测系统的研究[J]. 纺织学报, 2022, 43(04): 153-159.
[7] 刘汉邦, 李新荣, 冯文倩, 吴柳波, 袁汝旺. 面向服装面料的柯恩达效应式非接触夹持器吸附性能[J]. 纺织学报, 2022, 43(02): 208-213.
[8] 熊晶晶, 杨雪, 苏静, 王鸿博. 基于图像技术的织物导湿性能测试方法[J]. 纺织学报, 2021, 42(12): 70-75.
[9] 吕文涛, 林琪琪, 钟佳莹, 王成群, 徐伟强. 面向织物疵点检测的图像处理技术研究进展[J]. 纺织学报, 2021, 42(11): 197-206.
[10] 夏旭文, 孟朔, 潘如如, 高卫东. 基于改进帧间差分法的经纱撞筘拥纱在线检测[J]. 纺织学报, 2021, 42(06): 91-96.
[11] 江燕婷, 严庆帅, 辛斌杰, 高琮, 施楣梧. 纺织品单向导水性能测试方法分析[J]. 纺织学报, 2021, 42(05): 51-58.
[12] 李东洁, 郭帅, 杨柳. 基于改进图像阈值分割算法的纱线疵点检测[J]. 纺织学报, 2021, 42(03): 82-88.
[13] 唐千惠, 王蕾, 高卫东. 基于图像处理的织物保形性检测[J]. 纺织学报, 2021, 42(03): 89-94.
[14] 孟朔, 夏旭文, 潘如如, 周建, 王蕾, 高卫东. 基于卷积神经网络的机织物密度均匀性检测[J]. 纺织学报, 2021, 42(02): 101-106.
[15] 刘汉邦, 李新荣, 刘立东. 服装面料自动抓取转移方法的研究进展[J]. 纺织学报, 2021, 42(01): 190-196.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 赵良臣;闻涛. 旋转组织设计的数学原理[J]. 纺织学报, 2003, 24(06): 33 -34 .
[2] 曹建达;顾小军;殷联甫. 用BP神经网络预测棉织物的手感[J]. 纺织学报, 2003, 24(06): 35 -36 .
[3] 【作者单位】:中国纺织工程学会秘书处【分类号】:+【DOI】:cnki:ISSN:0-.0.00-0-0【正文快照】:  香港桑麻基金会设立的“桑麻纺织科技奖” 0 0 年提名推荐工作;在纺织方面院士;专家和有关单位的大力支持下;收到了 个单位 (人 )推荐的 位候选人的. 2003年桑麻纺织科技奖获奖名单[J]. 纺织学报, 2003, 24(06): 107 .
[4] 【分类号】:Z【DOI】:cnki:ISSN:0-.0.00-0-0【正文快照】:  一;纺 纱模糊控制纺纱张力的研究周光茜等 ( - )………………原棉含杂与除杂效果评价方法的研究于永玲 ( - )……网络长丝纱免浆免捻功能的结构表征方法李栋高等 ( - )……………. 2003年纺织学报第二十四卷总目次[J]. 纺织学报, 2003, 24(06): 109 -620 .
[5] 朱敏;周翔. 准分子激光对聚合物材料的表面改性处理[J]. 纺织学报, 2004, 25(01): 1 -9 .
[6] 黄立新. Optim纤维及产品的开发与应用[J]. 纺织学报, 2004, 25(02): 101 -102 .
[7] 邓炳耀;晏雄. 热压对芳纶非织造布机械性能的影响[J]. 纺织学报, 2004, 25(02): 103 -104 .
[8] 张治国;尹红;陈志荣. 纤维前处理用精练助剂研究进展[J]. 纺织学报, 2004, 25(02): 105 -107 .
[9] 秦元春. 纺织工业发展方向初探[J]. 纺织学报, 2004, 25(02): 108 -110 .
[10] 高伟江;魏文斌. 纺织业发展的战略取向——从比较优势到竞争优势[J]. 纺织学报, 2004, 25(02): 111 -113 .