纺织学报 ›› 2022, Vol. 43 ›› Issue (07): 200-206.doi: 10.13475/j.fzxb.20210407208
聂文琪1,2(), 孙江东1, 许帅1, 郑贤宏1, 徐珍珍1
NIE Wenqi1,2(), SUN Jiangdong1, XU Shuai1, ZHENG Xianhong1, XU Zhenzhen1
摘要:
为促进纤维基超级电容器在柔性能量存储领域的应用,以纺织纤维原料为类别,对高性能纤维(碳纳米管纤维,石墨烯纤维)、天然纤维、合成纤维基超级电容器的研究进行综述。在此基础上,对不同类型的纤维基超级电容器性能分析对比,总结各种纤维基超级电容器的优缺点。结果表明,高性能纤维基超级电容器的纤维结构、传荷位阻、离子扩散速率决定了纤维比能量及循环寿命,但该类型纤维基超级电容器受限于纤维材料的力学性能,后续织造较为困难;天然、合成纤维可满足后道纺织工艺对纤维的力学要求,易与纺织品结合成为整体,其储能大小受活性物质结构、密度、电荷传递协同效应影响较大。最后,针对柔性纤维基超级电容器研究存在的问题进行说明并对未来需要攻克的重点难点进行分析及展望。
中图分类号:
[1] |
RUCKDASHEL R R, VENKATARAMAN D P, JAY H. Smart textiles: a toolkit to fashion the future[J]. Journal of Applied Physics, 2021.DOI: 10.1063/5.0024006.
doi: 10.1063/5.0024006 |
[2] |
CHERENACK K, VAN P L. Smart textiles: challenges and opportunities[J]. Journal of Applied Physics, 2012.DOI: 10.1063/1.4742728.
doi: 10.1063/1.4742728 |
[3] |
SHIRSHOVA N, QIAN H, SHAFFER M S P, et al. Structural composite supercapacitors[J]. Composites Part A: Applied Science and Manufacturing, 2013, 46: 96-107.
doi: 10.1016/j.compositesa.2012.10.007 |
[4] |
GU X, CHAO L, FEI L, et al. A conductive interwoven bamboo carbon fiber membrane for Li-S batteries[J]. Journal of Materials Chemistry A, 2015, 3(18): 9502-9509.
doi: 10.1039/C5TA00681C |
[5] |
GUAN C, ZHAO W, HU Y, et al. High-performance flexible solid-state Ni/Fe battery consisting of metal oxides coated carbon cloth/carbon nanofiber electrodes[J]. Advanced Energy Materials, 2016.DOI: 10.1002/aenm.201601034.
doi: 10.1002/aenm.201601034. |
[6] |
MORETON R, WATT W. The spinning of polyacrylonitrile fibres in clean room conditions for the production of carbon fibres[J]. Carbon, 1974, 12(5): 543-554.
doi: 10.1016/0008-6223(74)90056-6 |
[7] |
SAWADA K, SAKAI S, TAYA M. Fabrication of ultrafine carbon fibers possessing a nanoporous structure from electrospun polyvinyl alcohol fibers containing silica nanoparticles[J]. Journal of Nanomaterials, 2014.DOI: 10.1155/2014/487943.
doi: 10.1155/2014/487943 |
[8] |
KIM J W, LEE J S. Preparation of carbon fibers from linear low density polyethylene[J]. Carbon, 2015, 94: 524-530.
doi: 10.1016/j.carbon.2015.06.074 |
[9] |
RAJABPOUR S, MAO Q, GAO Z, et al. Low-tem-perature carboniazation of polyacrylonitrile/grapheme carbon fibers: a combined ReaxFF molecular dyn-amics and experimental study[J]. Carbon, 2020.DOI: 10.1016/j.carbon.2020.12038.
doi: 10.1016/j.carbon.2020.12038. |
[10] | FITZER E. Carbon fibres and their composites[M]. Berlin: Springer-Verlag, 1985:7-26. |
[11] |
JALILI R, ABOUTALEBI S H, ESRAFILZADEH D, et al. Scalable one-step wet-spinning of graphene fibers and yarns from liquid crystalline dispersions of graphene oxide: towards multifunctional textiles[J]. Advanced Functional Materials, 2013, 23(43):5345-5354.
doi: 10.1002/adfm.201300765 |
[12] |
JAVAID A, SHAFFER MSP, BISMARCK A, et al. Carbon fibre-reinforced poly(ethylene glycol) diglycidylether based multifunctional structural supercapacitor composites for electrical energy storage applications[J]. Journal of Composite Materials, 2016, 50(16):2155-2163.
doi: 10.1177/0021998315602324 |
[13] |
KOWALEWSKI T, KIM E K, MCGANN J P, et al. Electrochemically active nitrogen-enriched nanocarbons with well-defined morphology synthesized by pyrolysis of self-assembled block copolymer[J]. Journal of the American Chemical Society, 2012, 134(36):14846-14857.
doi: 10.1021/ja304352n |
[14] |
LONG C L, QI D P, WEI Tong, et al. Nitrogen-doped carbon networks for high energy density supercapacitors derived from polyaniline coated bacterial cellulose[J]. Advanced Functional Materials, 2014, 24(25): 3953-3961.
doi: 10.1002/adfm.201304269 |
[15] |
SI W J, ZHOU J, ZHANG S M, et al. Tunable N-doped or dual N, S-doped activated hydrothermal carbons derived from human hair and glucose for supercapacitor applications[J]. Electrochimica Acta, 2013, 107:397-405.
doi: 10.1016/j.electacta.2013.06.065 |
[16] |
POULIN P, PENICAUD A, COULON C, et al. Macroscopic fibers and ribbons of oriented carbon nanotubes[J]. Science, 2000, 290(5495):1331-1334.
doi: 10.1126/science.290.5495.1331 |
[17] | RAZAL J M, COLEMAN J N, BAUGHMAN R H, et al. Arbitrarily shaped fiber assemblies from spun carbon nanotube gel fibers[J]. Advance Function Materials, 2007, 15(17):2918-2924. |
[18] |
DALTON A B, STEVE C, JOHN P F, et al. Super-tough carbon-nanotube fibres-These extraordinary composite fibres can be woven into electronic textiles[J]. Nature, 2003, 423(6941):703-706.
doi: 10.1038/423703a |
[19] |
ZHANG M, ATKINSON K R, BAUGHMAN R H. Multifunctional carbon nanotube yarns by downsizing an ancient technology[J]. Science, 2004, 306:1358-1361.
doi: 10.1126/science.1104276 |
[20] | PENG H S. Fiber-shaped energy harvesting and storage devices[M]. Berlin Heidelberg: Springer, 2015:117-145. |
[21] |
ZHANG L, TIAN Y, SONG C X, et al. Study on preparation and performance of flexible all-solid-state supercapacitor based on nitrogen-doped RGO/CNT/MnO2 composite fibers[J]. Journal of Alloys and Compounds, 2021.DOI: 10.1016/j.jallcom.2020.157816.
doi: 10.1016/j.jallcom.2020.157816. |
[22] |
KIM J E, HAN T H, LEE S H, et al. Graphene oxide liquid crystals[J]. Angewandte Chemie International Edition, 2011, 50(13):3043-3047.
doi: 10.1002/anie.201004692 |
[23] |
XU Z, GAO C. Aqueous liquid crystals of graphene oxide[J]. ACS Nano, 2011, 5(4):2908.
doi: 10.1021/nn200069w |
[24] |
GAO C, ZHAO X L, SUN H Y, et al. Ultrastrong fibers assembled from giant graphene oxide sheets[J]. Advanced Materials, 2013, 25(2):188-193.
doi: 10.1002/adma.201203448 |
[25] |
XIN G Q, LIAN J, SUN H T, et al. Highly thermally conductive and mechanically strong graphene fibers[J]. Science, 2015, 349(6252):1083-1087.
doi: 10.1126/science.aaa6502 |
[26] |
GAO C, WANG M, XU P, et al. Ultrastiff and strong graphene fibers via full-scale synergetic defect engineering[J]. Advanced Materials, 2016, 28(30): 6449-6456.
doi: 10.1002/adma.201506426 |
[27] |
GAO C, XU Z, LI P G, et al. Strong, conductive, lightweight, neat graphene aerogel fibers with aligned pores[J]. Acs Nano, 2012, 6(8):7103-7113.
doi: 10.1021/nn3021772 |
[28] |
ZHU M F, CHENG H M, LI F, et al. Scalable non-liquid-crystal spinning of locally aligned graphene fibers for high-performance wearable supercapacitors[J]. Nano Energy, 2015, 15:642-653.
doi: 10.1016/j.nanoen.2015.05.004 |
[29] |
QU L T, DONG Z L, CHENG H H, et al. Facile fabrication of light, flexible and multifunctional graphene fibers[J]. Advanced Materials, 2012, 24(14):1856-1861.
doi: 10.1002/adma.201200170 |
[30] |
CHEN Y, YU D S, WANG H, et al. Scalable synthesis of hierarchically structured carbon nanotube-graphene fibres for capacitive energy storage[J]. Nature Nanotechnology, 2014, 9(7):555-562.
doi: 10.1038/nnano.2014.93 |
[31] |
YE X K, ZHOU Q L, JIA C Y, et al. A knittable fibriform supercapacitor based on natural cotton thread coated with graphene and carbon nanoparticles[J]. Electrochimica Acta, 2016, 206:155-164.
doi: 10.1016/j.electacta.2016.04.100 |
[32] |
GAO Y H, MA W Z, TAO J Y, et al. Cable-type supercapacitors of three-dimensional cotton thread based multi-grade nanostructures for wearable energy storage[J]. Advanced Materials, 2013, 25(35):4925-4931.
doi: 10.1002/adma.201301311 |
[33] | 王艺颖, 聂文琪, 丁辛. 石墨烯/聚吡咯/棉纱线电极的制备和性能研究[J]. 产业用纺织品, 2017, 35(5):20-26. |
WANG Y Y, NIE W Q, DING X, et al. Study on the preparation and performance of electrode made of rGo/PPy/cotton yarn[J]. Technical Textiles, 2017, 35(5):20-26. | |
[34] |
LIU L B, LI K, ZHENG Z J, et al. Wearable energy-dense and power-dense supercapacitor yarns enabled by scalable graphene-metallic textile composite electrodes[J]. Nature Communications, 2015.DOI: 10.1038/ncomms8260.
doi: 10.1038/ncomms8260 |
[35] |
DU X, ZHAO W, MA Shuhui, et al. Effect of ZnCl2 impregnation concentration on the microstructure and electrical performance of ramie-based activated carbon hollow fiber[J]. Ionics, 2016, 22(4):545-553.
doi: 10.1007/s11581-015-1571-3 |
[36] |
PAN W, BA Y R, ZHOU S J, et al. Fabrication of polyaniline/copper sulfide/poly(ethylene terephthalate) thread electrode for flexible fiber-shaped supercapaci-tors[J]. Journal of Applied Polymer Science, 2018.DOI: 10.1002/app.46769.
doi: 10.1002/app.46769. |
[37] |
LI Y, LU C X, WANG J Z, et al. Superior supercapacitor electrode material from hydrazine hydrate modified porous polyacrylonitrile fiber[J]. Functional Materials Letters, 2016.DOI: 10.1142/S1793604716500326.
doi: 10.1142/S1793604716500326 |
[38] |
YADAV K, JASSAL M, AGRAWAL A K. Highly conducting silver nanowire-polyacrylonitrile hollow fibres for flexible supercapacitors[J]. International Journal of Energy Research, 2020, 44(2):1284-1293.
doi: 10.1002/er.4989 |
[39] |
ZHU M F, CHEN S H, MA W J, et al. Conductive, tough, hydrophilic poly(vinyl alcohol)/graphene hybrid fibers for wearable supercapacitors[J]. Journal of Power Sources, 2016, 319:271-280.
doi: 10.1016/j.jpowsour.2016.04.030 |
[40] |
LIU X H, MARLOW M N, SAMUEL J C, et al. Flexible all-fiber electrospun supercapacitor[J]. Journal of Power Sources, 2018, 384:264-269.
doi: 10.1016/j.jpowsour.2018.02.081 |
[1] | 陶旭晨, 李林, 徐珍珍. 杯芳烃/还原氧化石墨烯纤维的制备及其选择性吸附性能[J]. 纺织学报, 2022, 43(03): 64-70. |
[2] | 郭子娇, 李悦, 张瑞, 陆赞. 聚苯胺/Ti3C2Tx/碳纳米管复合纤维电极的制备及其性能[J]. 纺织学报, 2022, 43(02): 74-80. |
[3] | 方剑, 任松, 张传雄, 陈钱, 夏广波, 葛灿. 智能可穿戴纺织品用电活性纤维材料[J]. 纺织学报, 2021, 42(09): 1-9. |
[4] | 姜兆辉, 李永贵, 杨自涛, 郭增革, 张战旗, 齐元章, 金剑. 聚合物基石墨烯复合纤维及其纺织品研究进展[J]. 纺织学报, 2021, 42(03): 175-180. |
[5] | 李清文 赵静娜 张骁骅. 碳纳米管纤维的物理性能与宏量制备及其应用[J]. 纺织学报, 2018, 39(12): 145-151. |
[6] | 张梅 贾紫璇 孙小娟 李宏伟. 石墨烯纤维的湿法纺制及其性能[J]. 纺织学报, 2018, 39(01): 1-5. |
[7] | 张克勤 杜德壮. 石墨烯功能纤维[J]. 纺织学报, 2016, 37(10): 153-157. |
|