纺织学报 ›› 2022, Vol. 43 ›› Issue (05): 124-129.doi: 10.13475/j.fzxb.20210500806

• 染整与化学品 • 上一篇    下一篇

功能化水刺粘胶纤维膜的制备及其在漆酶固定化中的应用

刘锁1, 王雅倩2, 魏安方1, 赵磊1, 凤权1()   

  1. 1.安徽工程大学 纺织服装学院, 安徽 芜湖 241000
    2.江南大学 教育部针织技术工程研究中心, 江苏 无锡 214122
  • 收稿日期:2021-05-05 修回日期:2022-01-13 出版日期:2022-05-15 发布日期:2022-05-30
  • 通讯作者: 凤权
  • 作者简介:刘锁(1997—),男,硕士生。主要研究方向为功能性纤维膜的制备。
  • 基金资助:
    安徽省自然科学基金项目(2008085ME139);安徽工程大学校级国家科学基金预研项目(2016yyzr05)

Preparation of functional spunlaced viscose fiber membrane and its application for laccase immobilization

LIU Suo1, WANG Yaqian2, WEI Anfang1, ZHAO Lei1, FENG Quan1()   

  1. 1. School of Textiles and Garment, Anhui Polytechnic University, Wuhu, Anhui 241000, China
    2. Engineering Research Center for Knitting Technology, Ministry of Education, Jiangnan University, Wuxi, Jiangsu 214122, China
  • Received:2021-05-05 Revised:2022-01-13 Published:2022-05-15 Online:2022-05-30
  • Contact: FENG Quan

摘要:

针对现有材料对漆酶的负载率低,负载漆酶后重复使用性能差等缺点,以甲基丙烯酸羟乙酯(HEMA)为单体,采用原子转移自由基聚合(ATRP)技术对工业化生产的水刺粘胶纤维膜进行改性处理,然后将改性后的水刺粘胶纤维膜 (即SV-poly(HEMA))进行Fe3+吸附,最后将吸附Fe3+后的SV-poly(HEMA)(即SV-poly(HEMA)- Fe(Ⅲ))作为配位法固定漆酶的载体,探究其对漆酶固定化的含量、活性、稳定性和重复使用性能,同时对纤维形貌和结构进行表征。结果表明:SV-poly(HEMA)-Fe(Ⅲ)对漆酶的固定化量达到132.9 mg/g;与自由漆酶相比,固定化漆酶对温度变化(20~70 ℃)表现出更强的抵抗力,对pH值(2.0~7.0)表现出更低的敏感性;将负载漆酶的SV-poly(HEMA)-Fe(Ⅲ)重复使用10次后,漆酶的活性依然保持在55%以上。

关键词: 水刺粘胶纤维膜, 原子转移自由基聚合, 配位法, 固定化酶, 漆酶

Abstract:

Aiming at the shortcomings of low loading rate of laccase with the existing materials and poor cyclic use performance after loading laccase, spunlaced viscose fiber membrane were surfaced modified for improved bonding of polymer chains adopting the atom transfer radical polymerization method, using hydroxyethyl methacrylate (HEMA) as the monomer (SV-poly(HEMA)) followed by coordination with Fe3+ions(SV-poly(HEMA)-Fe(Ⅲ)), which, as a carrier, was explored for immobilization performance of laccase. Meanwhile, the morphology and structure were analyzed. The results show that the immobilized content of laccase by SV-poly(HEMA)-Fe(Ⅲ) reached 132.9 mg/g and the immobilized laccase demonstrates stronger thermal stability(20-70 ℃) and lower sensitivity to pH value(2.0-7.0) compared with free laccase. Immobilized laccase maintains its initial activity more than 55% after 10 repeated uses.

Key words: spunlaced viscose fiber membrane, atom transfer radical polymerization, coordination method, immobilizing enzyme, laccase

中图分类号: 

  • TQ342

图1

水刺粘胶纤维膜的ATRP接枝过程示意图"

图2

水刺粘胶纤维膜的扫描电镜照片(×400)"

表1

元素种类及其质量分数"

样品名称 质量分数/%
C O Br
水刺粘胶纤维膜 44.98 55.02 0.00
引发反应后的水刺粘胶纤维膜 48.48 51.54 0.39

图3

接枝改性前后水刺粘胶纤维膜的红外光谱图"

图4

水刺粘胶纤维膜对漆酶固定化量"

图5

温度与pH值对游离漆酶和固定化漆酶的影响"

图6

固定化漆酶的重复使用性能"

图7

漆酶的储存稳定性能"

[1] 陈荣圻. 漆酶在棉织物漂白和印染废水脱色的应用[J]. 染料与染色, 2020, 57(6):34-41.
CHEN Rongyin. The application of laccase in cotton fabric bleaching and printing and dyeing wastewater decolorization[J]. Dyestuffs & Coloration, 2020, 57(6):34-41.
[2] 马慧婕, 沈忱思, 章耀鹏, 等. 纺织工业产排污特征与水污染治理技术进展[J]. 环境科学研究, 2020, 33(11):2529-2539.
MA Huijie, SHEN Chensi, ZHANG Yaopeng, et al. Characteristics of textile industry pollution discharge and water pollution control technology progress[J]. Environmental Science Research, 2020, 33(11):2529-2539.
[3] CHEN X H, ZHOU Q Z, LIU F M, et al. Removal of nine pesticide residues from water and soil by biosorption coupled with degradation on biosorbent immobilized laccase[J]. Chemosphere, 2019, 233:49-56.
doi: 10.1016/j.chemosphere.2019.05.144
[4] ASIF M B, VAN DE MERWE J P, LEUSCH F D, et al. Elucidating the performance of an integrated laccase-and persulfate-assisted process for degradation of trace organic contaminants (TrOCs)[J]. Environmental Science: Water Research & Technology, 2020, 6(4):1069-1082.
[5] FENG Q, LI X, WU D S, et al. Preparation of the AOPAN-poly(HEMA) nanofibers via the atom transfer radical polymerization method and their application for laccase immobilization[J]. Journal of Industrial Textiles, 2018, 48(1):25-37.
doi: 10.1177/1528083717721921
[6] TUNCAY D, YAGAR H. Decolorization of reactive Blue-19 textile dye by boletus edulis laccase immobilized onto rice husks[J]. International Journal of Environmental Science and Technology, 2020, 17(6):3177-3188.
doi: 10.1007/s13762-020-02641-z
[7] RAZA S, YONG X Y, DENG J P. Immobilizing cellulase on multi-layered magnetic hollow particles: preparation, bio-catalysis and adsorption performances[J]. Microporous and Mesoporous Materials, 2019, 28:112-119.
[8] ULU Ahmet, BIRHANLI Emre, BORAN Filiz, et al. Laccase-conjugated thiolated chitosan-Fe3O4 hybrid composite for biocatalytic degradation of organic dyes[J]. International Journal of Biological Macromolecules, 2020, 150:871-884.
doi: S0141-8130(19)40057-3 pmid: 32027899
[9] FENG Q, WU D S, ZHAO Y, et al. Electrospun AOPAN/RC blend nanofiber membrane for efficient removal of heavy metal ions from water[J]. Journal of Hazardous Materials, 2018, 344:819-828.
doi: 10.1016/j.jhazmat.2017.11.035
[10] CHEN H Y, CHENG K C, HSU R J, et al. Enzymatic degradation of ginkgolic acid by laccase immobilized on novel electrospun nanofiber mat[J]. Journal of the Science of Food and Agriculture, 2020, 100(6):2705-2712.
doi: 10.1002/jsfa.10301
[11] WANG Q Q, CUI J, LI G H, et al. Laccase immobilization by chelated metal ion coordination chemistry[J]. Polymers, 2014, 6(9):2357-2370.
doi: 10.3390/polym6092357
[12] FENG Q, ZHAO Y, WEI A F, et al. Immobilization of catalase on electrospun PVA/PA6-Cu(Ⅱ) nanofibrous membrane for the development of efficient and reusable enzyme membrane reactor[J]. Environmental Science & Technology, 2014, 48(17): 10390-10397.
doi: 10.1021/es501845u
[13] NETI V S, DAS S, BROWN S, et al. Efficient functionalization of polyethylene fibers for the uranium extraction from seawater through atom transfer radical polymerization[J]. Industrial & Engineering Chemistry Research, 2017, 56 (38):10826-10832.
doi: 10.1021/acs.iecr.7b00482
[14] 刘新华, 李永, 储兆洋, 等. 细菌纤维素气凝胶接枝甲基丙烯酸二甲氨乙酯的制备[J]. 纺织学报, 2018, 39(3):1-6,13.
LIU Xinhua, LI Yong, CHU Zhaoyang, et al. Preparation of dimethyl methacrylate grafted by aerogel from bacterial cellulose[J]. Journal of Textile Research, 2018, 39(3):1-6,13.
doi: 10.1177/004051756903900101
[15] RUSEN Edina, RALUCA Somoghi, BUSUIOC Cristina, et al. Hydrophilic modification of polyvinyl chloride with polyacrylic acid using ATRP[J]. RSC Advances, 2020, 10(59):35692-35700.
doi: 10.1039/D0RA05936F
[1] 刘锁, 武丁胜, 李曼, 赵玲玲, 凤权. 水刺粘胶/聚苯胺复合纤维膜的制备及其吸附性能[J]. 纺织学报, 2021, 42(08): 122-127.
[2] 刘新华 李永 储兆洋 杨旭 王翠娥. 细菌纤维素气凝胶接枝甲基丙烯酸二甲氨乙酯的制备[J]. 纺织学报, 2018, 39(03): 1-6.
[3] 张毅 徐亚军 郁崇文. 湿纺亚麻纱的生化联合处理工艺[J]. 纺织学报, 2016, 37(3): 31-34.
[4] 蒋约林 吴金丹 何驹 葛华云 王际平. 氨基硅油整理法在温敏纺织品制备中的应用[J]. 纺织学报, 2015, 36(02): 86-91.
[5] 贾维妮 范雪荣 王强. 漆酶对蚕丝织物的生物染色[J]. 纺织学报, 2013, 34(12): 66-0.
[6] 张勇兵 张婉 王强 范雪荣 袁久刚 王平 章金芳. 漆酶处理对黄麻纤维木质素结构的影响[J]. 纺织学报, 2013, 34(11): 94-0.
[7] 华欣春 陈丽丽 毕云枫 沈明浩. Coprinopsis cinerea 漆酶基因的克隆及其在毕赤酵母中的表达[J]. 纺织学报, 2012, 33(10): 79-83.
[8] 宦庆松;范雪荣;王强;王平;崔莉 . 聚丙烯纤维光接枝改性及其在漆酶固定化中的应用[J]. 纺织学报, 2009, 30(10): 80-84.
[9] 楼利琴;许平辉;陈波;任伟伟. 竹原纤维酶处理的纤细化效果[J]. 纺织学报, 2007, 28(5): 84-88.
[10] 高恩丽;张树江;夏黎明;余为民. 云芝漆酶在牛仔布生物整理中的应用[J]. 纺织学报, 2007, 28(4): 73-75.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!