纺织学报 ›› 2022, Vol. 43 ›› Issue (04): 133-139.doi: 10.13475/j.fzxb.20210500907

• 服装工程 • 上一篇    下一篇

多孔式通风服衣下空气层的定量研究

钱静, 赵蒙蒙(), 党天华   

  1. 上海工程技术大学 纺织服装学院, 上海 201620
  • 收稿日期:2021-05-06 修回日期:2022-01-24 出版日期:2022-04-15 发布日期:2022-04-20
  • 通讯作者: 赵蒙蒙
  • 作者简介:钱静(1997—),女,硕士生。主要研究方向为服装工效与生理学。
  • 基金资助:
    国家自然科学基金项目(1908349);现代服装设计与技术教育部重点实验室(东华大学)开放课题项目(KLCDT2020-06)

Quantitative study of air layer under multi-opening air ventilation clothing

QIAN Jing, ZHAO Mengmeng(), DANG Tianhua   

  1. College of Textiles and Fashion, Shanghai University of Engineering Science, Shanghai 201620, China
  • Received:2021-05-06 Revised:2022-01-24 Published:2022-04-15 Online:2022-04-20
  • Contact: ZHAO Mengmeng

摘要:

为研究服装开口方式和风扇风速对通风服衣下空气层的体积、厚度及分布的影响,采用三维扫描法得到人体和服装的几何模型,通过逆向工程软件Geomagic Control对模型进行处理,分析不同条件下空气层厚度和体积的差异,以及空气层的分布规律。结果表明:风扇风速对平均空气层厚度的影响比开口方式更明显;风扇风速对整体和局部空气层的厚度影响显著,风扇风速越大,一些部位的空气层厚度越厚,且分布得更加均匀;从胸部和腰部 2个部位空气层的二维比较结果可以看出,随风速和开口的改变,胸部的空气层厚度变化并不明显,而腰部发生了明显变化。

关键词: 通风服, 三维扫描法, 逆向工程软件, 分布规律, 空气层厚度

Abstract:

In order to study the influence of clothing with different opening position and wind speeds on the volume, thickness and distribution of air layer under an air ventilation clothing, three-dimensional scanning method was adopted to obtain geometric models of human body and clothing. The model was then processed by reverse engineering software, Geomagic Control, to analyze the difference in thickness and volume of air layer and obtain the distribution regularities of air layer under different conditions. The results show that the influence of wind speed on the average air layer thickness is more obvious than that of the opening mode. The wind speeds of the fans have a significant effect on the overall and local air layer thickness. The higher is the wind speed, the thicker is the air layer in body part, and more evenly distributed is the air layer. From the two-dimensional comparison of the air layer in the chest and waist areas, it can be seen that the thickness of the air layer in the chest does not change significantly with the changes of the wind speed and the opening, while the air layer in the waist is affected significantly.

Key words: air ventilation clothing, three-dimensional scanning method, reverse engineering software, distribution regularity, air layer thickness

中图分类号: 

  • TS941.731

图1

服装的款式及开口方式示意图"

图2

博克三维人体扫描仪"

表1

扫描实验的设计方案"

实验编号 服装款式 风扇风速/(m·s-1) 风扇状态
T1 A 5.0 高速
T2 A 3.8 低速
T3 A 0.0 关闭
T4 B 5.0 高速
T5 B 3.8 低速
T6 B 0.0 关闭
T7 C 5.0 高速
T8 C 3.8 低速
T9 C 0.0 关闭
T10 D 5.0 高速
T11 D 3.8 低速
T12 D 0.0 关闭
T13 E 5.0 高速
T14 E 3.8 低速
T15 E 0.0 关闭

图3

空气层模型拟合过程"

图4

开启风扇前后侧面空气层对比图"

图5

不同风速和开口面积情况下平均衣下空气层厚度差"

表2

风速和开口面积对衣下空间的影响"

衣下空间 相关系数 标准误差 F 显著性(p)
风速 开口面积 风速 开口面积 风速 开口面积 风速 开口面积
平均空气层体积 0.869** -0.044 0.415 4.337 94.096 1.490 0.000 0.292
平均空气层厚度 0.832** -0.120 0.377 3.748 45.854 0.628 0.000 0.656
腰部平均空气厚度 0.850** -0.109 0.572 5.657 96.520 1.480 0.000 0.295
胸部平均空气厚度 0.907** 0.142 0.331 6.473 43.156 0.830 0.000 0.542

图6

不同款式服装人体躯干的正面和背面空气层分布"

图7

不同款式服装人体胸部和腰部空气层分布图"

图8

腰部和胸部空气厚度差"

[1] 张昭华, 应思艺, 郭云昕, 等. 三维人体扫描技术在服装工效学中的应用[J]. 上海纺织科技, 2015, 43(8): 40-44.
ZHANG Zhaohua, YING Siyi, GUO Yunxin, et al. The application of 3D scanning technology on garment ergonomics[J]. Shanghai Textile Science & Technology, 2015, 43(8): 40-44.
[2] KANG Zhanxiao, SHOU Dahua, FAN Jintu. Numerical modeling of body heat dissipation through static and dynamic clothing air gaps[J]. International Journal of Heat and Mass Transfer, 2020, 157: 1-3.
[3] 姜茸凡, 王云仪. 服装衣下空气层热传递性能研究进展[J]. 丝绸, 2018, 55(7): 41-48.
JIANG Rongfan, WANG Yunyi. Research progress of heat transfer performance of air layer entrapped in clothing[J]. Journal of Silk, 2018, 55(7): 41-48.
[4] MERT Emel, PSIKUTA Agnes, BUENO Marie-Ange, et al. The effect of body postures on the distribution of air gap thickness and contact area[J]. International Journal of Biometeorology, 2017, 61(2): 363-375.
doi: 10.1007/s00484-016-1217-9 pmid: 27522664
[5] UDAY Raja, TALUKDARA Prabal, DAS Apurba, et al. Numerical modeling of heat transfer and fluid motion in air gap between clothing and human body: effect of air gap orientation and body movement[J]. International Journal of Heat and Mass Transfer, 2017, 108: 271-291.
doi: 10.1016/j.ijheatmasstransfer.2016.12.016
[6] FRACKIEWICZ-KACZMAREK Joanna, PSIKUTA Agnes, BUENO Marie-Ange, et al. Air gap thickness and contact area in undershirts with various moisture contents: influence of garment fit, fabric structure and fiber composition[J]. Textile Research Journal, 2015, 85(20): 2196-2207.
doi: 10.1177/0040517514551458
[7] FRACKIEWICZ-KACZMAREK Joanna, PSIKUTA Agnes, BUENO Marie-Ange, et al. Effect of garment properties on air gap thickness and the contact area distribution[J]. Textile Research Journal, 2015, 85(18): 1907-1918.
doi: 10.1177/0040517514559582
[8] YU Miao, WANG Yunyi, WANG Yipei, et al. Correlation between clothing air gap space and fabric mechanical properties[J]. Journal of The Textile Institute, 2013, 104(1): 67-77.
doi: 10.1080/00405000.2012.693274
[9] PSIKUTA Agnes, FACKIEWICZ-KACZMAREK Joanna, FRYDRYCH Iwona, et al. Quantitative evaluation of air gap thickness and contact area between body and garment[J]. Textile Research Journal, 2012, 82(14): 1405-1413.
doi: 10.1177/0040517512436823
[10] SCHWARZ-MÜLLER Frank, MARSHALL Russell, SUMMERSKILL Steve. Development of a positioning aid to reduce postural variability and errors in 3D whole body scan measurements[J]. Applied Ergonomics, 2018, 68: 90-100.
doi: 10.1016/j.apergo.2017.11.001
[11] MERT Emel, PSIKUTA Agnes, ARÉVALO M, et al. A validation methodology and application of 3D garment simulation software to determine the distribution of air layers in garments during walking[J]. Measurement: Journal of the International Measurement Confederation, 2018, 117: 153-164.
[12] MAH Tannie, SONG Guowen. Investigation of the contribution of garment design to thermal protection: part 1: characterizing air gaps using three-dimensional body scanning for women's protective clothing[J]. Textile Research Journal, 2010, 80(13): 1317-1329.
doi: 10.1177/0040517509358795
[13] LEE Yejin, HONG Kyunghi, HONG Sung Ae. 3D quantification of microclimate volume in layered clothing for the prediction of clothing insulation[J]. Applied Ergonomics, 2007, 38(3): 349-355.
pmid: 16756938
[14] PSIKUTA Agnes, FRACKIEWICZ-KACZMAREK Joanna, MERT Emel, et al. Validation of a novel 3D scanning method for determination of the air gap in clothing[J]. Journal of the International Measurement Confederation, 2015, 67: 61-70.
doi: 10.1016/j.measurement.2015.02.024
[15] KIM Young, LEE Calvin, LI Peng, et al. Investigation of air gaps entrapped in protective clothing systems[J]. Fire and Materials, 2002, 26(3): 121-126.
doi: 10.1002/fam.790
[16] DAANEN H, HATCHER K, HAVENITH G. Determination of clothing microclimate volume[J]. Elsevier Ergonomics Book Series, 2005, 3: 361-365.
[17] PSIKUTA Agnes, MERT Emel, ANNAHEIM S, et al. Local air gap thickness and contact area models for realistic simulation of human thermo-physiological response[J]. International Journal of Biometeorology, 2018, 62: 1121-1134.
doi: 10.1007/s00484-018-1515-5
[18] 博克时代科技. 博克人体三维数据采集系统的应用[EB/OL]. (2021-01-21) [2021-05-08]. http://www.bokecad.com/index.php?m=content&c=index&a=show&catid=259&id=3.
Bok Era Technology. The application of Bok huaman 3D data acquisition system[EB/OL].(2021-01-21) [2021-05-08]. http://www.bokecad.com/index.php?m=content&c=index&a=show&catid=259&id=3.
[19] 韩霞. 基于Imageware、Geomagic Studio的产品逆向设计[J]. 北京服装学院学报(自然科学版), 2010, 30(3): 31-35.
HAN Xia. Reverse design of the products based on Imageware, Geomagic Studio[J]. Journal of Beijing Institute of Fashion Technology (Natural Science Edition), 2010, 30(3): 31-35.
[20] 胡影峰. Geomagic Studio软件在逆向工程后处理中的应用[J]. 制造业自动化, 2009, 31(9): 135-137.
HU Yingfeng. The application of Geomagic Studio software in reverse engineering post-processing[J]. Manufacturing Automation, 2009, 31(9): 135-137.
[21] 王云仪, 张雪, 李小辉, 等. 基于Geomagic软件的燃烧假人衣下空气层特征提取[J]. 纺织学报, 2012, 33(11): 102-106.
WANG Yunyi, ZHANG Xue, LI Xiaohui, et al. Geomagic-based characteristic extraction of air gap under clothing[J]. Journal of Textile Research, 2012, 33(11): 102-106.
[22] LU Yehu, SONG Guowen, LI Jun. A novel approach for fit analysis of thermal protective clothing using three-dimensional body scanning[J]. Applied Ergonomics, 2014, 45(6): 1439-1446.
doi: 10.1016/j.apergo.2014.04.007 pmid: 24793820
[23] ZHAO Mengmeng, GAO Chuansi, WANG Faming, et al. A study on local cooling of garments with ventilation fans and openings placed at different torso sites[J]. International Journal of Industrial Ergonomics, 2013, 43(3): 232-237.
doi: 10.1016/j.ergon.2013.01.001
[1] 张昭华, 陈之瑞, 李璐瑶, 肖平, 彭浩然, 张钰涵. 人体局部皮肤的气流敏感性及其影响因素[J]. 纺织学报, 2021, 42(12): 125-130.
[2] 吴国珊, 刘何清, 吴世先, 游波, 宋小鹏. 不同环境下个体通风服的制冷量[J]. 纺织学报, 2021, 42(10): 139-145.
[3] 赵敬德, 丁义冉, 张春红. 室外高温环境下通风服装的传热模型与实验研究[J]. 纺织学报, 2021, 42(06): 153-159.
[4] 张昭华, 李璐瑶, 安瑞平. 管道式通风服头部与躯干部位的热湿舒适性评价[J]. 纺织学报, 2020, 41(08): 88-94.
[5] 赵蒙蒙, 柯莹, 王发明, 李俊. 通风服热舒适性研究现状与展望[J]. 纺织学报, 2019, 40(03): 183-188.
[6] 王敏, 李俊. 燃烧假人衣下空气层的三维现场扫描测量与表征[J]. 纺织学报, 2019, 40(01): 114-119.
[7] 袁新林 徐艳华. 段染纱横编织物花纹预测[J]. 纺织学报, 2017, 38(10): 44-48.
[8] 赵蒙蒙 宋晓霞. 通风服装对人体热舒适的影响[J]. 纺织学报, 2017, 38(10): 94-97.
[9] 王云仪 张雪 李小辉 李俊. 基于Geomagic软件的燃烧假人衣下空气层特征提取[J]. 纺织学报, 2012, 33(11): 102-106.
[10] 金子敏;罗晓菊;阎玉秀;陶建伟. 男式无缝上衣压力的分布规律及其舒适压范围[J]. 纺织学报, 2010, 31(10): 104-109.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!