纺织学报 ›› 2023, Vol. 44 ›› Issue (03): 126-131.doi: 10.13475/j.fzxb.20210504006

• 染整与化学品 • 上一篇    下一篇

废食用油-水无盐体系活性染色棉织物的服用性能

齐浩彤, 张林森, 侯秀良, 徐荷澜()   

  1. 江南大学 纺织科学与工程学院, 江苏 无锡 214122
  • 收稿日期:2021-05-17 修回日期:2022-12-22 出版日期:2023-03-15 发布日期:2023-04-14
  • 通讯作者: 徐荷澜(1985—),女,校聘教授,博士。主要研究方向为生物质材料。E-mail:xuhelan@jiangnan.edu.cn
  • 作者简介:齐浩彤(1997—),男,硕士生。主要研究方向为生态染整和生物质材料。
  • 基金资助:
    国家重点研发计划项目(2017YFB0309602/001)

Wear performances of cotton fabrics reactive-dyed in salt-free waste cooking oil-water system

QI Haotong, ZHANG Linsen, HOU Xiuliang, XU Helan()   

  1. College of Textile Science and Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
  • Received:2021-05-17 Revised:2022-12-22 Published:2023-03-15 Online:2023-04-14

摘要:

针对活性染料传统水相染色工艺会产生大量含有高浓度染料和盐的废水的现状,提出了一种新型废食用油-水两相活性染料染色体系。比较了在油水两相体系与传统水相体系中染色的棉织物在常规服用性能以及织物手感方面的差异。结果表明:传统水相染色棉织物的经纬向毛细高度均稍低于油水染色棉织物的经纬向毛细高度;2种染色织物的极限氧指数相近,约为18%,磨破次数也十分相近,分别为25±2和24±2;传统水相染色棉织物的经纬向缓弹回复角比油水染色棉织物的分别高17%与19%,前者受到外力时有更好的形状回复能力;在综合手感总指数方面,油水染色棉织物的0.58±0.2与传统水相染色棉织物的0.60±0.2相比,差异不大;油水两相溶剂染色体系染色得到的棉织物与传统水相染色体系相比有微小差异,但是大部分性能可达到行业标准。

关键词: 废食用油, 棉织物, 活性染料, 染色, 低碱, 织物手感, 服用性能

Abstract:

Objective Conventional aqueous phase dyeing produces a large amount of wastewater containing high concentrations of dyes and salts. A new waste cooking oil-water two-phase dyeing system was investigated to prove the effectiveness in cotton dyeing, and the minimal discharge of hydrolyzed dyes, salts and alkali.

Method An oil-water two-phase dyeing system and a conventional aqueous dyeing system were adopted to dye cotton fabrics. Wear performances include capillary adsorption, combustion behavior, kubbing resistance, wrinkle-recovery behavior, water vapor permeability, moisture regain, and hand feeling of fabrics dyed in the two systems were studied and compared.

Results Wicking heights of two-phase dyed cotton fabric are about 10% and 20% lower than their water dyed counterparts in both warp and weft directions, respectively. A small amount of oil may remain in the fiber interior, causing plug of the capillaries. Continuous burning time of two-phase dyed cotton fabric are slightly shorter than that of aqueous dyed cotton fabric. Smoldering time of two-phase dyed cotton fabrics were (8.14 ± 0.58)s and (7.90±1.43) s, respectively, and that of aqueous dyed cotton fabric were (7.70 ± 0.67) s and (8.24 ± 0.61) s, respectively. The limit oxygen index (LOI) of two-phase dyed cotton fabric was (17.60±0.05)%, close to (17.85±0.06)%, the LOI value of aqueous dyed counterparts. With regard to wear resistance, two-phase dyed cotton fabric resembled aqueous dyed cotton fabric with 24±2 and 25±2 cycles, respectively. The warp and weft elastic recovery angles of two-phase dyed cotton fabric are (68.32 ± 10.98)(°) and (65.80 ± 8.31)(°), respectively, higher than the angles of aqueous dyed cotton fabric are (57.92 ± 9.97)(°) and (54.92 ± 11.78)(°), respectively. Recovery angles of two-phase dyed cotton fabric are (62.14 ± 7.23)(°) and (54.10 ± 8.80)(°), respectively, also moderately higher than that of aqueous dyed cotton fabric. Moisture regain of two-phase dyed and aqueous dyed cotton fabrics are (8.75±0.84)% and (9.59±0.23)%, respectively, while moisture transmittance of two-phase dyed and aqueous dyed cotton fabrics are (3 827±453) and (2 562 ± 136) g/(m2·24 h), respectively. Overall hand feeling indices of two-phase dyed and aqueous dyed cotton fabrics are 0.60±0.02 and 0.58±0.02, respectively, indicating similar hand feeling of the two fabrics.

Conclusion In general, although there were some slight differences in wear performances and hand feeling between cotton fabrics dyed in a two-phase system and an aqueous system, most of the properties could meet the industry standards.

Key words: waste cooking oil, cotton fabric, reactive dye, dyeing, low-alkali, fabric hand feeling, wear performance

中图分类号: 

  • TS197

图1

传统水相染色工艺曲线"

图2

油水两相染色工艺曲线"

图3

油水两相染色工艺流程图"

表1

染色棉织物的性能测试结果"

染色方式 芯吸高度/cm 续燃时间/s 阴燃时间/s 极限氧指数/%
经向 纬向 经向 纬向 经向 纬向
油水两相染色 8.6±0.4 6.5±0.5 2.60±0.60 2.92±0.58 8.14±0.58 7.90±1.43 17.60±0.05
水相染色 9.5±0.6 7.9±0.6 4.64±0.37 5.30±0.94 7.70±0.67 8.24±0.61 17.85±0.06
染色方式 磨破次数 急弹回复角/(°) 缓弹回复角/(°) 透湿率/
(g·(m2·24 h)-1)
回潮率/%
经向 纬向 经向 纬向
油水两相染色 24±2 62.14±7.23 54.10±8.80 68.32±10.98 65.80±8.31 3 827±453 8.75±0.84
水相染色 25±2 45.36±11.45 45.68±13.56 57.92±9.97 54.92±11.78 2 562±136 9.59±0.23

图4

织物燃烧后形貌图"

表2

织物手感测试结果"

染色
方式
平均弯曲刚度/
(cN·mm·rad-1)
弯曲功/
(cN·mm·rad)
压缩功/
(cN·mm)
压缩回弹率/
%
平均压缩刚度/
(cN·cm-2·mm-1)
平均回弹刚度/
(cN·cm-2·mm-1)
表面粗糙度振幅/
μm
油水两
相染色
137.60±53.32 298.45±54.94 647.25±68.24 30.50±3.54 538.35±16.48 3 787.35±331.20 15.65±0.49
水相
染色
117.00±43.57 348.47±122.68 673.20±26.10 39.00±6.24 613.40±170.93 3 953.07±225.29 14.50±1.25
染色
方式
热导率/(W·(m·℃)-1) 最大热流量/
(W·m-2)
表面摩
擦因数
光滑度 柔软度 温暖感 总指数
压缩 回复
油水两
相染色
23.10±0.14 23.30±0.14 1 197.00±44.41 0.30±0.01 0.52±0.02 0.57±0.04 0.70±0.06 0.60±0.02
水相
染色
23.93±0.57 24.07±0.35 1 252.23±20.00 0.27±0.01 0.56±0.06 0.61±0.08 0.45±0.14 0.58±0.02
[1] FERUS M. Comparison of application performance of reactive dyes[J]. Melliand International, 2021, 27(1): 34-35.
[2] DASGUPTA J, SIKDER J, CHAKRABORTY S, et al. Remediation of textile effluents by membrane based treatment techniques: a state of the art review.[J]. Journal of Environmental Management, 2015, 147(1): 55-72.
doi: 10.1016/j.jenvman.2014.08.008
[3] JAIN P, MOTOSUKE M. Temperature sensitivity of BODIPY dye (pyrromethene 597) over different linear organic solvents[J]. Japanese Journal of Applied Physics, 2022. DOI: 10.35848/1347-4065/ac5fc9.
doi: 10.35848/1347-4065/ac5fc9
[4] CHENG Y W, BENAS J S, LIANG F C, et al. Synthesis of azo disperse dyes with high absorption for efficient polyethylene terephthalate dyeing performances in supercritical carbon dioxide[J]. Polymers, 2022. DOI: 10.3390/polym14153020.
doi: 10.3390/polym14153020
[5] HOSSEINPOUR F, POURTABRIZI M. Experimental investigation of nonlinear optical responses of fuchsine dye by reversed micelles[J]. Optical and Quantum Electronics, 2021, 53(10): 1-16.
doi: 10.1007/s11082-020-02634-9
[6] LIU L Y, MU B N, LI W, et al. Cost-effective reactive dyeing using spent cooking oil for minimal discharge of dyes and salts.[J]. Journal of Cleaner Production, 2019, 227(AUG.1): 1023-1034.
doi: 10.1016/j.jclepro.2019.04.277
[7] LIU L Y, MU B N, LI W, et al. Clean cotton dyeing in circulated dyebath of waste cooking oil: a feasible industrialization strategy for pollution minimization.[J]. Journal of Cleaner Production, 2021. DOI: 10.1016/j.jclepro.2020.123799.
doi: 10.1016/j.jclepro.2020.123799
[8] 涂志丹. 涤/锦/棉织物的分散染料/涂料染色和阻燃整理研究[D]. 苏州: 苏州大学, 2019: 1-30.
TU Zhidan. Study on dyeing with disperse dyes/pigments and flame retardant finishing of polyester/nylon/cotton[D]. Suzhou: Soochow University, 2019: 1-30.
[9] 刘淑萍, 李亮, 刘让同, 等. 棉织物的3-氨丙基三乙氧基硅烷阻燃整理[J]. 纺织学报, 2021, 42(10): 107-114.
LIU Shuping, LI Liang, LIU Rangtong, et al. Flame retardant finishing of cotton fabric with tri-aminopropyl triethoxysilane[J]. Journal of Textile Research, 2021, 42(10): 107-114.
[10] 侯文双, 闵洁, 纪峰, 等. 织物紧度和抗皱整理工艺对纯棉机织物折皱回复性的影响[J]. 纺织学报, 2021, 42(1): 118-124.
HOU Wenshuang, MIN Jie, JI Feng, et al. Influence of fabric tightness and anti-crease finishing on wrinkle recovery of pure cotton woven fabrics[J]. Journal of Textile Research, 2021, 42(1): 118-124.
[11] 王清源. 聚乳酸纤维与桑蚕丝交织织物透湿和放湿性能的探讨[J]. 纺织报告, 2020, 39(6): 31-34.
WANG Qingyuan. Discussion on moisture permeability andmoisture release performance of polylactic acid fiber and mulberry silk interwoven fabric[J]. Textile Reports, 2020, 39(6): 31-34.
[12] LEBO M, ASIS P. Heat, moisture and air transport through clothing textiles[J]. Textile Progress, 2020, 52(3): 129-166.
doi: 10.1080/00405167.2021.1955524
[13] 江海星, 简志光, 郑化龙. 量化织物皮肤接触舒适感的快速测量方法研究[J]. 中国纤检, 2016(9): 94-97.
JIANG Haixing, JIAN Zhiguang, ZHENG Hualong. A quantitative study of quick measuring methods of rapid skin contact comfort of fabrics[J]. China Fiber Inspection, 2016(9): 94-97.
[14] 张华, 高燕, 张杰. 锦/棉混纺织物手感评价[J]. 上海纺织科技, 2020, 48(9): 57-59.
ZHANG Hua, GAO Yan, ZHANG Jie, et al. Evaluation of nylon/cotton blended fabric[J]. Shanghai Textile Science & Technology, 2020, 48(9): 57-59.
[1] 钱红飞, KOBIR MD. Foysal, 陈龙, 李林祥, 方帅军. 聚乳酸/聚(3-羟基丁酸酯-co-3-羟基戊酸酯)共混纤维的结构及其织物染色性能[J]. 纺织学报, 2023, 44(03): 104-110.
[2] 齐迪, 丁洪, 王祥荣. 儿茶素络合染料的制备及其对蚕丝织物的染色性能[J]. 纺织学报, 2023, 44(03): 111-118.
[3] 贾艳梅, 于学智. 柞叶染料对柞蚕丝织物的染色及其吸附动力学研究[J]. 纺织学报, 2023, 44(03): 119-125.
[4] 苏淼, 周凯丽, 段怡婷, 鲁佳亮, 杨丽梅. 基于色度测量的乾隆色谱色彩特征研究[J]. 纺织学报, 2023, 44(03): 132-138.
[5] 王金坤, 刘秀明, 房宽峻, 乔曦冉, 张帅, 刘冬冬. 双乙烯砜基团活性染料染色对棉织物防皱性能的提升[J]. 纺织学报, 2023, 44(02): 207-213.
[6] 丁娟, 刘阳, 张晓飞, 郝克倩, 宗蒙, 孔雀. Fe/C多孔碳材料制备及其涂层棉织物的吸波性能[J]. 纺织学报, 2023, 44(02): 191-198.
[7] 曲连艺, 刘江龙, 徐英俊, 王玉忠. 仿贻贝型耐久抗菌织物的制备及其性能[J]. 纺织学报, 2023, 44(02): 176-183.
[8] 蒋琦, 刘云, 朱平. 茶多酚基阻燃/防紫外线棉织物的制备及其性能[J]. 纺织学报, 2023, 44(02): 222-229.
[9] 张帅, 房宽峻, 刘秀明, 乔曦冉. 活性染料结构对彩色聚合物纳米球性能的影响[J]. 纺织学报, 2022, 43(12): 96-101.
[10] 乔曦冉, 房宽峻, 刘秀明, 巩继贤, 张帅, 张敏. 羟乙基甲基纤维素改性对棉和锦纶织物表面性质的差异性影响[J]. 纺织学报, 2022, 43(11): 127-132.
[11] 张福沐, 刘端武, 胡跃明. 染色机助剂智能配送系统的构建及实践[J]. 纺织学报, 2022, 43(11): 179-187.
[12] 邵敏, 王丽君, 李美琪, 刘今强, 邵建中. 非水介质-微水体系中活性染料的水解和键合性能[J]. 纺织学报, 2022, 43(11): 94-103.
[13] 张典典, 于梦楠, 李敏, 刘明明, 付少海. 基于聚合物微球接枝硅油的超滑棉织物制备及其防污性能[J]. 纺织学报, 2022, 43(10): 119-125.
[14] 郭亚飞, 梁高勇, 王美慧, 郝新敏. 臭氧等离子体预处理对芳纶染色性能的影响[J]. 纺织学报, 2022, 43(10): 83-88.
[15] 陈珺娴, 李伟萍, 付琪轩, 冯新星, 张华. 芳纶/阻燃粘胶/阻燃锦纶混纺织物制备及其性能[J]. 纺织学报, 2022, 43(09): 107-114.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!