纺织学报 ›› 2022, Vol. 43 ›› Issue (05): 77-85.doi: 10.13475/j.fzxb.20210504109

• 纤维材料 • 上一篇    下一篇

电化学沉积锌电池MnOx/碳纳米纤维膜自支撑正极的制备及其电化学特性

杨科1, 闫俊1, 肖勇2, 徐晶3, 陈磊1(), 刘雍1   

  1. 1.天津工业大学 纺织科学与工程学院, 天津 300387
    2.山东非金属材料研究所, 山东 济南 250031
    3.泉州海关综合技术服务中心, 福建 泉州 362000
  • 收稿日期:2021-05-17 修回日期:2022-01-05 出版日期:2022-05-15 发布日期:2022-05-30
  • 通讯作者: 陈磊
  • 作者简介:杨科(1995—),男,硕士。主要研究方向为锌离子电池正极材料。
  • 基金资助:
    中国博士后科学基金特别资助项目(2019T120189);中国博士后科学基金面上一等资助项目(2018M640240)

Preparation of MnOx/carbon nanofiber membrane free-standing cathodes for zinc ion battery based on electrochemical deposition and their electrochemical characteristics

YANG Ke1, YAN Jun1, XIAO Yong2, XU Jing3, CHEN Lei1(), LIU Yong1   

  1. 1. School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
    2. Institute of Nonmetallic Materials of Shandong, Ji'nan, Shandong 250031, China
    3. Technical Service Center of Quanzhou Customs, Quanzhou, Fujian 362000, China
  • Received:2021-05-17 Revised:2022-01-05 Published:2022-05-15 Online:2022-05-30
  • Contact: CHEN Lei

摘要:

为开发性能优越、制备工艺简单的可充电锌离子电池(ZIBs)正极材料,以静电纺纳米纤维膜为前驱体,经预氧化和高温炭化制备了碳纳米纤维膜(CNFs),并以CNFs为基底,结合电化学沉积法制备了具有皮芯结构的MnOx/CNFs复合材料。探讨了不同电化学沉积时间对MnOx/CNFs复合材料表面形貌、结构以及ZIBs循环充放稳定性和倍率性能等电化学性能的影响。结果表明:电化学沉积法使MnOx活性材料与CNFs基底间界良好结合,减少了活性材料脱附,提高了二者的界面离子和电子传输能力;以沉积2 h的MnOx/CNFs作为正极时,ZIBs在0.1 A/g电流密度下的比容量可达647.9 mA·h/g,且在0.5 A/g电流密度下循环充放电500次后仍能保持221.8 mA·h/g的比容量;经2 A/g电流密度循环充放电后在0.1 A/g电流密度下仍能恢复至初始比容量的94%,具有较好倍率性能。

关键词: 碳纳米纤维膜, 电化学沉积, 静电纺丝, 自支撑材料, 锌离子电池

Abstract:

To develop cathode materials for rechargeable zinc ion batteries (ZIBs) with excellent performance and a simple preparation process, electrospun nanofiber membranes were used as precursors to prepare carbon nanofiber films (CNFs) by pre-oxidation and high-temperature carbonization. MnOx/CNFs composites with the skin-core structure were prepared by using electrochemical deposition method with CNFs as substrate. The effects of electrochemical deposition time on the surface morphology, specific surface area, cyclic charge-discharge stability, and rate performance of MnOx/CNFs composites were discussed. The results show that the electrochemical deposition method promotes a good interfacial bonding between the loaded active material and the CNFs substrate and improves the ion and electron transport capacity at the interface. The specific capacity can reach 647.9 mA·h/g after the activation at the current density of 0.1 A/g. In addition, the ZIBs with MnOx/CNFs cathode via depositing MnOx for 2 h show the specific capacity of 221.8 mA·h/g after 500 cycles under the current density of 0.5 A/g. After cycling of charging and discharging at the current density of 2 A/g, 94% of the initial capacity can still be restored at the current density of 0.1 A/g, which represent excellent performance of MnOx/CNFs cathode.

Key words: carbon nanofiber membrane, electrochemical deposition, electrostatic spinning, free-standing material, zinc ion battery

中图分类号: 

  • TS179

图1

MnOx/CNFs复合材料制备流程示意图及各步骤对应样品形貌演变图"

图2

CNFs、MnOx/CNFs-1、MnOx/CNFs-2和MnOx/CNFs-3的表面和截面SEM和TEM照片"

图3

MnOx/CNFs-2表面Mn元素分布图"

图4

MnOx/CNFs-2的XPS全谱图和Mn2p光谱图"

图5

CNFs和MnOx/CNFs-2的XRD谱图及α-MnO2晶体结构示意图"

图6

N2吸附-脱附等温曲线"

图7

MnOx/CNFs-2复合正极材料的循环伏安曲线"

图8

0.1 A/g电流密度下CNFs、MnOx/CNFs-1、MnOx/CNFs-2、MnOx/CNFs-3第2次循环充放电曲线"

图9

CNFs, MnOx/CNFs-1, MnOx/CNFs-2, MnOx/CNFs-3的电化学性能"

表1

MnOx/CNFs复合膜与其他碳基材料的容量比较"

材料 循环次数 电流密度/(A·g-1) 比容量/(mA·h·g-1) 数据来源
MnOx/碳纳米纤维 50 0.1 ~340 本文
500 0.5 ~200
β-MnO2/C 250 0.2 ~150 [11]
石墨烯 50 0.1 ~20 [16]
石墨烯 800 7 ~87.4 [17]
碳纳米角/碳纳米管 500 3 ~159.1 [19]
MnOx/N-C 600 0.5 ~240 [37]
Mn3O4/C 450 0.5 ~215 [27]
MnO2/碳纳米管 1 000 2.77 ~100 [10]
ZnMn2O4NDs/还原氧化石墨烯 100 0.2 ~207.6 [39]
碳布/MnO2 200 1.2 ~250 [32]
δ-MnO2/石墨烯 100 0.4 ~114.2 [18]
MnO2/石墨烯 10 000 2 ~190 [40]
MnO2/碳纳米管 500 5 ~100 [14]
MnO2/C 50 0.066 ~189 [30]

图10

长时间循环使用前后MnOx/CNFs-2的扫描电镜照片"

[1] 陈悦, 赵永欢, 褚朱丹, 等. 基于碳纤维及其织物的柔性锂电池电极研究进展[J]. 纺织学报, 2019, 40(2): 173-180.
CHEN Yue, ZHAO Yonghuan, CHU Zhudan, et al. Research progress of flexible lithium battery electrodes based oncarbon fibers and their fabrics[J]. Journal of Textile Research, 2019, 40(2): 173-180.
[2] YU H, CHEN L, LI W, et al. Root-whisker structured 3D CNTs-CNFs network based on coaxial electrospinning: a free-standing anode in lithium-ion batteries[J]. Journal of Alloys and Compounds, 2021, 863: 158481.
doi: 10.1016/j.jallcom.2020.158481
[3] GWON H, HONG J, KIM H, et al. Recent progress on flexible lithium rechargeable batteries[J]. Energy & Environmental Science, 2014, 7(2): 538-551.
[4] ZENG L C, QIU L, CHENG H M. Towards the practical use of flexible lithium ion batteries[J]. Energy Storage Materials, 2019, 23: 434-438.
doi: 10.1016/j.ensm.2019.04.019
[5] GOODENOUGH J B, PARK K S. The Li-ion rechargeable battery: a perspective[J]. Journal of the American Chemical Society, 2013, 135(4): 1167-1176.
doi: 10.1021/ja3091438
[6] FANG G, ZHOU J, PAN A, et al. Recent advances in aqueous zinc-ion batteries[J]. ACS Energy Letters, 2018, 3(10): 2480-2501.
doi: 10.1021/acsenergylett.8b01426
[7] KIM H, JEONG G, KIM Y U, et al. Metallic anodes for next generation secondary batteries[J]. Chemical Society Reviews, 2013, 42(23): 9011-9034.
doi: 10.1039/c3cs60177c
[8] XU C X, ZHANG Y, ZHANG N Q, et al. 2020 roadmap on zinc metal batteries[J]. Chemistry, 2020, 15(22): 3696-3708.
[9] XU C J, LI B H, DU H D, et al. Energetic zinc ion chemistry: the rechargeable zinc ion battery[J]. Angewandte Chemie: International Edition, 2012, 51(4): 933-935.
doi: 10.1002/anie.201106307
[10] LI H, HAN C, HUANG Y, et al. An extremely safe and wearable solid-state zinc ion battery based on a hierarchical structured polymer electrolyte[J]. Energy & Environmental Science, 2018, 11(4): 941-951.
[11] JIANG W W, XU X J, LIU Y X, et al. Facile plasma treated β-MnO2@C hybrids for durable cycling cathodes in aqueous Zn-ion batteries[J]. Journal of Alloys and Compounds, 2020, 827: 154273.
doi: 10.1016/j.jallcom.2020.154273
[12] CHAMOUN M, BRANT W R, TAI C W, et al. Rechargeability of aqueous sulfate Zn/MnO2 batteries enhanced by accessible Mn2+ ions[J]. Energy Storage Materials, 2018, 15: 351-360.
doi: 10.1016/j.ensm.2018.06.019
[13] SUN W, WANG F, HOU S Y, et al. Zn/MnO2 battery chemistry with H+ and Zn2+ coinsertion[J]. Journal of The American Chemical Society, 2017, 139(29): 9775-9778.
doi: 10.1021/jacs.7b04471
[14] XU D W, LI B H, WEI C G, et al. Preparation and characterization of MnO2/acid-treated CNT nanocomposites for energy storage with zinc Ions[J]. Electrochimica Acta, 2014, 133: 254-261.
doi: 10.1016/j.electacta.2014.04.001
[15] CHO I, CHOI J, KIM K, et al. A comparative investigation of carbon black (super-P) and vapor-grown carbon fibers (VGCFs) as conductive additives for lithium-ion battery cathodes[J]. RSC Advances, 2015, 5(115): 95073-95078.
doi: 10.1039/C5RA19056H
[16] OZGIT D, HIRALAL P, AMARATUNGA G A J. Improving performance and cyclability of zinc-silver oxide batteries by using graphene as a two dimensional conductive additive[J]. ACS Applied Materials & Interfaces, 2014, 6(23): 20752-20757.
[17] WU B K, ZHANG G B, YAN M Y, et al. Graphene scroll-coated α-MnO2 nanowires as high-performance cathode materials for aqueous zn-ion battery[J]. Small, 2018, 14(13):1703805.
[18] KHAMSANGA S, PORNPRASERTSUK R, YONEZAWA T, et al. δ-MnO2 nanoflower/graphite cathode for rechargeable aqueous zinc ion batteries[J]. Scientific Reports, 2019, 9:8441.
doi: 10.1038/s41598-019-44915-8
[19] HUANG Y, LI Z, JIN S, et al. Carbon nanohorns/nanotubes: an effective binary conductive additive in the cathode of high energy-density zinc-ion rechargeable batteries[J]. Carbon, 2020, 167: 431-438.
doi: 10.1016/j.carbon.2020.05.056
[20] CHEN R Z, HU Y, SHEN Z, et al. Facile fabrication of foldable electrospun polyacrylonitrile-based carbon nanofibers for flexible lithium-ion batteries[J]. Journal of Materials Chemistry A, 2017, 5(25): 12914-12921.
doi: 10.1039/C7TA02528A
[21] 康卫民, 范兰兰, 邓南平, 等. 静电纺丝多孔碳纳米纤维制备与应用研究进展[J]. 纺织学报, 2017, 38(11): 168-176.
KANG Weimin, FAN Lanlan, DENG Nanping, et al. Research progress in preparation and application of electrospinning porous carbon nanofibers[J]. Journal of Textile Research, 2017, 38(11): 168-176.
[22] CHIANG Y C, WU C Y, CHEN Y J. Effects of activation on the properties of electrospun carbon nanofibers and their adsorption performance for carbon dioxide[J]. Separation and Purification Technology, 2020, 233:116040.
doi: 10.1016/j.seppur.2019.116040
[23] LI B, GE X M, GOH F W T, et al. Co3O4 nanoparticles decorated carbon nanofiber mat as binder-free air-cathode for high performance rechargeable zinc-air batteries[J]. Nanoscale, 2015, 7(5): 1830-1838.
doi: 10.1039/C4NR05988C
[24] LIANG H W, WU Z Y, CHEN L F, et al. Bacterial cellulose derived nitrogen-doped carbon nanofiber aerogel: an efficient metal-free oxygen reduction electrocatalyst for zinc-air battery[J]. Nano Energy, 2015, 11: 366-376.
doi: 10.1016/j.nanoen.2014.11.008
[25] SHANG C Q, YANG M Y, WANG Z Y, et al. Encapsulated MnO in N-doping carbon nanofibers as efficient ORR electrocatalysts[J]. Science China Materials, 2017, 60(10): 937-946.
doi: 10.1007/s40843-017-9103-1
[26] LIU G X, HUANG H W, BI R, et al. K+ pre-intercalated manganese dioxide with enhanced Zn2+ diffusion for high rate and durable aqueous zinc-ion batteries[J]. Journal of Materials Chemistry A, 2019, 7(36): 20806-20812.
doi: 10.1039/C9TA08049J
[27] LONG J, YANG Z, YANG F, et al. Electrospun core-shell Mn3O4/carbon fibers as high-performance cathode materials for aqueous zinc-ion batteries[J]. Electrochimica Acta, 2020, 344:136155.
doi: 10.1016/j.electacta.2020.136155
[28] LIU H D, HU Z L, SU Y Y, et al. MnO2 nanorods/3D-rGO composite as high performance anode materials for Li-ion batteries[J]. Applied Surface Science, 2017, 392: 777-784.
doi: 10.1016/j.apsusc.2016.09.104
[29] WANG F, DAI H, DENG J, et al. Manganese oxides with rod-, wire-, tube-, and flower-like morphologies: highly effective catalysts for the removal of toluene[J]. Environmental Science & Technology, 2012, 46(7): 4034-4041.
doi: 10.1021/es204038j
[30] ISLAM S, ALFARUQI M H, SONG J, et al. Carbon-coated manganese dioxide nanoparticles and their enhanced electrochemical properties for zinc-ion battery applications[J]. Journal of Energy Chemistry, 2017, 26(4): 815-819.
doi: 10.1016/j.jechem.2017.04.002
[31] SUN W, BAI J, LI C, et al. Effect of graphitization degree of electrospinning carbon fiber on catalytic oxidation of styrene and electrochemical properties[J]. Chemical Physics Letters, 2019, 715: 299-309.
doi: 10.1016/j.cplett.2018.11.055
[32] KATAOKA F, ISHIDA T, NAGITA K, et al. Cobalt-doped layered MnO2 thin film electrochemically grown on nitrogen-doped carbon cloth for aqueous zinc-ion batteries[J]. ACS Applied Energy Materials, 2020, 3(5): 4720-4726.
doi: 10.1021/acsaem.0c00357
[33] JIA X, LIU C, NEALE Z G, et al. Active materials for aqueous zinc ion batteries: synthesis, crystal structure, morphology, and electrochemistry[J]. Chemical Reviews, 2020, 120(15): 7795-7866.
doi: 10.1021/acs.chemrev.9b00628
[34] SONG M, TAN H, CHAO D, et al. Recent advances in Zn-ion batteries[J]. Advanced Functional Materials, 2018, 28(41):1802564.
doi: 10.1002/adfm.201802564
[35] HUANG J, TU J, LV Y, et al. Achieving mesoporous MnO2@polyaniline nanohybrids via a gas/liquid interfacial reaction between aniline and KMnO4 aqueous solution towards Zn-MnO2 battery[J]. Synthetic Metals, 2020, 266:116438.
doi: 10.1016/j.synthmet.2020.116438
[36] HUANG J H, WANG Z, HOU M Y, et al. Polyaniline-intercalated manganese dioxide nanolayers as a high-performance cathode material for an aqueous zinc-ion battery[J]. Nature Communications, 2018, 9:2906.
doi: 10.1038/s41467-018-04949-4
[37] FU Y Q, WEI Q L, ZHANG G X, et al. High-performance reversible aqueous zn-ion battery based on porous MnOx nanorods coated by MOF-derived N-doped carbon[J]. Advanced Energy Materials, 2018, 8(26):1801445.
doi: 10.1002/aenm.201801445
[38] PAN H L, SHAO Y Y, YAN P F, et al. Reversible aqueous zinc/manganese oxide energy storage from conversion reactions[J]. Nature Energy, 2016.DOI: 10.1038/nenergy.2016.39.
doi: 10.1038/nenergy.2016.39
[39] YAO Z F, CAI D P, CUI Z X, et al. Strongly coupled zinc manganate nanodots and graphene composite as an advanced cathode material for aqueous zinc ion batteries[J]. Ceramics International, 2020, 46(8): 11237-11245.
doi: 10.1016/j.ceramint.2020.01.148
[40] SHI M J, XIAO P, YANG C, et al. Scalable gas-phase synthesis of 3D microflowers confining MnO2 nanowires for highly-durable aqueous zinc-ion batteries[J]. Journal of Power Sources, 2020, 463:228209.
doi: 10.1016/j.jpowsour.2020.228209
[1] 李琴, 李兴兴, 解芳芳, 周文龙, 陈恺宜, 刘宇清. 静电纺丝和炭化法制备纳米纤维素储能材料研究进展[J]. 纺织学报, 2022, 43(05): 178-184.
[2] 陈锋, 姬忠礼, 于文瀚, 董伍强, 王倩琳, 王德国. 纳米纤维膜润湿性对三明治结构复合过滤材料气液过滤性能的影响[J]. 纺织学报, 2022, 43(05): 63-69.
[3] 陈明军, 李好义, 杨卫民. 聚合物熔体微分静电纺电场对射流的影响及其物理模型[J]. 纺织学报, 2022, 43(05): 70-76.
[4] 孙哲茹, 张庆乐, 郝林聪, 程璐, 夏鑫. 仿星型拓扑几何结构聚氨酯/聚二甲基硅氧烷防水透湿膜制备与性能[J]. 纺织学报, 2022, 43(04): 40-46.
[5] 金旭, 刘方, 杜嬛, 华超, 公旭中, 张秀芹, 汪滨. 纳米纤维负载型纳米零价铁基材料在环境修复中的应用研究进展[J]. 纺织学报, 2022, 43(03): 201-209.
[6] 张宇, 刘来俊, 李超婧, 晋巧巧, 谢千阳, 李佩伦, 王富军, 王璐. 外泌体功能化串晶结构纤维膜的制备及其成骨分化性能[J]. 纺织学报, 2022, 43(03): 24-30.
[7] 张爱琴, 郝佳程, 王芷, 王永超, 刘淑强, 董海亮, 贾虎生, 许并社. 键合型高分子荧光纤维的制备及其荧光增强机制[J]. 纺织学报, 2022, 43(03): 50-57.
[8] 陶旭晨, 李林, 徐珍珍. 杯芳烃/还原氧化石墨烯纤维的制备及其选择性吸附性能[J]. 纺织学报, 2022, 43(03): 64-70.
[9] 周筱雅, 马定海, 胡铖烨, 洪剑寒, 刘永坤, 韩潇, 闫涛. 涤纶/聚酰胺6纳米纤维包覆纱的连续制备及其应用[J]. 纺织学报, 2022, 43(02): 110-115.
[10] 郭子娇, 李悦, 张瑞, 陆赞. 聚苯胺/Ti3C2Tx/碳纳米管复合纤维电极的制备及其性能[J]. 纺织学报, 2022, 43(02): 74-80.
[11] 徐兆宝, 何翠, 赵瑾朝, 黄乐平. 同轴静电纺多级微纳米纤维膜的制备及其相变调温性能[J]. 纺织学报, 2022, 43(02): 69-73.
[12] 许仕林, 杨世玉, 张亚茹, 胡柳, 胡毅. 热塑性聚氨酯/特氟龙无定形氟聚物超疏水纳米纤维膜制备及其性能[J]. 纺织学报, 2021, 42(12): 42-42.
[13] 贾琳, 王西贤, 李环宇, 张海霞, 覃小红. 聚丙烯腈/BaTiO3复合纳米纤维过滤膜的制备及其性能[J]. 纺织学报, 2021, 42(12): 34-41.
[14] 王曙东, 董青, 王可, 马倩. 还原氧化石墨烯增强聚乳酸纳米纤维膜的制备及其性能[J]. 纺织学报, 2021, 42(12): 28-33.
[15] 周园园, 郑煜铭, 吴小琼, 邵再东. 静电纺纳米纤维光催化剂性能增强方法的研究进展[J]. 纺织学报, 2021, 42(11): 179-186.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!