纺织学报 ›› 2022, Vol. 43 ›› Issue (05): 156-162.doi: 10.13475/j.fzxb.20210504207

• 服装工程 • 上一篇    下一篇

服装企业包装订单分配排序优化模型及其快速非支配遗传算法求解

潘佳豪1,2, 周其洪1,2(), 岑均豪3, 李姝佳1, 周申华1   

  1. 1.东华大学 机械工程学院, 上海 201620
    2.东华大学 数字化纺织服装技术教育部工程研究中心,上海 201620
    3.广州盛原成自动化科技有限公司, 广东 广州 511400
  • 收稿日期:2021-05-18 修回日期:2022-01-07 出版日期:2022-05-15 发布日期:2022-05-30
  • 通讯作者: 周其洪
  • 作者简介:潘佳豪(1997—),男,硕士生。主要研究方向为生产线仿真及生产管理系统。
  • 基金资助:
    国家重点研发计划项目(2017YFB1304000)

Optimization modeling for packaging order allocation for garment enterprises and solution finding using non-dominated genetic algorithm

PAN Jiahao1,2, ZHOU Qihong1,2(), CEN Junhao3, LI Shujia1, ZHOU Shenhua1   

  1. 1. College of Mechanical Engineering, Donghua University, Shanghai 201620, China
    2. Engineering Research Center of Digitalized Textile and Fashion Technology, Ministry of Education, Donghua University, Shanghai 201620, China
    3. Guangzhou Seyounth Automation Technology Co., Ltd., Guangzhou, Guangdong 511400, China
  • Received:2021-05-18 Revised:2022-01-07 Published:2022-05-15 Online:2022-05-30
  • Contact: ZHOU Qihong

摘要:

为解决纺织服装生产企业包装出货过程中在包装订单分配与排序时存在的分配方案不合理、拖期时间长等问题,在考虑包装线机器分配及机器调整时间约束的情况下,建立以最小化最大完成时间和拖期时间为目标函数的包装订单分配排序两目标优化数学模型,并采用基于参考点的快速非支配遗传算法对模型进行求解,然后对优化解进行解码输出优化方案。通过该模型与算法求解相关企业的具体算例,结果表明:该模型输出结果缩短了最大完成时间,有效地控制了拖期,几种优化方案的平均最大完成时间相较于按交货期优先规则的方案缩短了4.7%,且所有方案的总拖期均小于4 h。研究成果在提升纺织服装生产企业的包装出货效率方面具有良好的应用与推广价值。

关键词: 包装订单, 分配排序, 多目标优化, 非支配排序, 遗传算法, 服装企业

Abstract:

In order to solve the problems of irrational task allocation scheme and long delay time in order allocation and sorting in the packaging and delivery process of garment manufacturers, a two-objective optimization mathematical model for packaging order allocation and sorting with maximum completion time and tardiness as objective functions was established taking into account for the constraints to machine allocation and machine adjustment time of the packaging line. A reference-point-based multi-objective evolutionary algorithm was used to solve the model before decoding the optimized solution and output the optimized scheme. This model was employed to solve a specific problem encountered by an enterprise, the results demonstrate that the new model is able to shorten the maximum completion time and can effectively control the delay. The average maximum completion time of several optimization schemes is 4.7% shorter than that of the earliest due date rule schemes, and the total delay time of all schemes is less than 4 hours. The research findings are of good application value in improving the packaging and shipping efficiency of garment manufacturers.

Key words: packaging order, allocation and sorting, multi-objective optimization, non-dominated sorting, genetic algorithm, garment enterprise

中图分类号: 

  • TS941

图1

NSGA-Ⅲ算法流程图"

图2

个体编码与排序解码"

图3

单点PMX交叉操作示例及交叉效果"

图4

变异操作示例"

表1

模型验证算例数据"

订单号 订单种类 交货期/h 箱数/围巾数 处理时间/h
装箱类型1 装箱类型2 装箱类型3 装箱类型4 装箱类型5
1 1* 65 525/18 900 44.187 5
2 1* 72 475/17 100 62/1 116 360/8 640 63.417 5
3 2* 60 14/1 190 2.702 8
4 2* 78 9/198 0.477 5
5 2* 67 22/3 300 7.425
6 2* 58 10/500 2/80 2/60 1.480 6
7 2* 74 5/475 1/71 1.230 3
8 1* 69 20/280 0.705 6
9 3* 85 459/10 016 17.212 5
10 3* 77 62/2 232 5.218 3
11 2* 70 11/1 320 1/48 5/650 1/118 4.821 7
12 2* 62 7/840 1/88 4/520 1/32 3.343 1
13 1* 88 177/4 248 10.177 5
14 3* 96 176/6 336 14.813 3
15 2* 94 53/1 166 1/15 2/38 127/2 032 1/10 8.013 3

表2

EDD优先规则分配排序方案"

分配与排序方案 拖期情况 最大完成
时间/h
总拖
期/h
[6,12,5,8,11,2,15] 0,0,0,0,0,11.393 5,0 99.919 7 15.313 2
[3,1,7,10,4,9,13,14] 0,0,0,0,0,0,0,3.919 7

图5

最大完成时间和总拖期迭代图"

图6

综合适应度迭代图"

图7

优化后种群两目标函数值分布"

表3

优化后结果对应方案"

方案序号 分配方案 排序方案 拖期订单 拖期时间/h 最大完成时间/h 总拖期/h
1 [6,7,11,3,8,2,13,15] [4,5,12,1,10,9,14] 2号订单
15号订单
3.458 5
0.149 3
94.177 2 3.607 8
2 [6,3,7,11,4,2,13,15] [5,12,1,8,10,9,14] 2号订单 3.230 4 94.405 3 3.230 4
3 [7,6,3,11,2,13,15] [4,5,12,1,8,10,9,14] 2号订单 2.752 9 94.882 8 2.752 9
4 [7,6,3,11,2,13,15] [11,5,4,1,10,9,14] 2号订单 1.979 9 95.655 8 1.979 9
5 [6,3,7,4,12,2,13,15] [11,5,1,8,10,9,14] 2号订单 1.751 8 95.883 9 1.751 8
6 [7,6,3,12,2,13,15] [11,4,5,1,8,10,9,14] 2号订单
14号订单
1.274 3
0.361 4
96.361 4 1.635 7
[1] 夏明. 智能制造在纺织服装工业的应用现状与展望[J]. 中国纺织, 2019(11):168-169.
XIA Ming. The application status and prospect of intelligent manufacturing in textile and garment industry[J]. China Textile, 2019(11):168-169.
[2] 闫玺铃. 面向订单的混流生产线车间调度模型的研究[D]. 太原: 中北大学, 2020:12-14.
YAN Xiling. Research on shop scheduling model of order-oriented mixed flow production line[D]. Taiyuan: North University of China, 2020:12-14.
[3] BEKTUR G, SARAC T. A mathematical model and heuristic algorithms for an unrelated parallel machine scheduling problem with sequence-dependent setup times, machine eligibility restrictions and a common server[J]. Computers & Operations Research, 2019, 103: 46-63.
doi: 10.1016/j.cor.2018.10.010
[4] 黄敏芳, 张源凯, 王颜新, 等. 基于JIT装配模式的网上超市订单分拣优化模型[J]. 中国管理科学, 2020, 28(5): 159-166.
HUANG Minfang, ZHANG Yuankai, WANG Yanxin, et al. Online supermarket order sorting optimization model based on JIT assembly model[J]. Chinese Journal of Management Science, 2020, 28(5): 159-166.
[5] 郑小虎, 鲍劲松, 马清文, 等. 基于模拟退火遗传算法的纺纱车间调度系统[J]. 纺织学报, 2020, 41(6):36-41.
ZHENG Xiaohu, BAO Jinsong, MA Qingwen, et al. Spinning workshop collaborative scheduling method based on simulated annealing genetic algorithm[J]. Journal of Textile Research, 2020, 41(6): 36-41.
[6] 孙玉姣, 胡祥培, 曾庆成. 集装箱码头装卸作业顺序多目标优化调度模型[J]. 系统工程理论与实践, 2020, 40(1):195-209.
doi: 10.12011/1000-6788-2018-1000-15
SUN Yujiao, HU Xiangpei, ZENG Qingcheng. A multi-objective optimization model for operation scheduling in container terminals[J]. Systems Engineering-Theory & Practice, 2020, 40(1):195-209.
[7] 黄辉, 李梦想, 严永. 考虑序列设置时间的混合流水车间多目标调度研究[J]. 运筹与管理, 2020, 29(12):215-221.
HUANG Hui, LI Mengxiang, YAN Yong. Research on multi-objective scheduling of hybrid flow production shop considering sequence setting time[J]. Operations Research and Management Science, 2020, 29(12):215-221.
[8] 裴小兵, 杨景霞. 一种解决带有紧急插单问题的果蝇优化算法[J]. 系统工程, 2020, 38(6):139-146.
PEI Xiaobing, YANG Jingxia. A fruit fly optimization algorithm for solving the problem with emergent insertion[J]. Systems Engineering, 2020, 38(6):139-146.
[9] 王家海, 李营力, 刘铮玮, 等. 柔性作业车间调度的精确邻域结构混合进化算法[J]. 同济大学学报(自然科学版), 2021, 49(3):440-448.
WANG Jiahai, LI Yingli, LIU Zhengwei, et al. Evolutionary algorithm with precise neighborhood structure for flexible workshop scheduling[J]. Journal of Tongji Univer-sity(Natural Science Edition), 2021, 49(3):440-448.
[10] 李俚, 谭大燕. 成品出货集装箱装箱作业均衡研究[J]. 装备制造技术, 2020(6):158-161.
LI Li, TAN Dayan. Study on the balance of container loading operation for finished product shipment[J]. Equipment Manufacturing Technology, 2020(6):158-161.
[11] PRATA B D A, RODRIGUES C D, FRAMINAN J M. Customer order scheduling problem to minimize makespan with sequence-dependent setup times[J]. Computers & Industrial Engineering, 2021, 151: 106962.
doi: 10.1016/j.cie.2020.106962
[12] LAHA D, GUPTA J N D. An improved cuckoo search algorithm for scheduling jobs on identical parallel machines[J]. Computers & Industrial Engineering, 2018, 126: 348-360.
doi: 10.1016/j.cie.2018.09.016
[13] EWEES A A, AL-QANESS M A A, ABD ELAZIZ M. Enhanced salp swarm algorithm based on firefly algorithm for unrelated parallel machine scheduling with setup times[J]. Applied Mathematical Modelling, 2021, 94: 285-305.
doi: 10.1016/j.apm.2021.01.017
[14] DEB K, JAIN H. An Evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach: part I: solving problems with box constraints[J]. IEEE Transactions on Evolutionary Computation, 2014, 18(4): 577-601.
doi: 10.1109/TEVC.2013.2281535
[1] 沈春娅, 雷钧杰, 汝欣, 彭来湖, 胡旭东. 基于改进型NSGAII的织造车间多目标大规模动态调度[J]. 纺织学报, 2022, 43(04): 74-83.
[2] 邵景峰, 石小敏. 基于非支配排序遗传算法的细纱工艺参数优化[J]. 纺织学报, 2022, 43(01): 80-88.
[3] 谢子昂, 杜劲松, 余雅芸, 陈清婷, 费中华. 西服定制吊挂生产线的筛选秩序优化[J]. 纺织学报, 2021, 42(10): 150-156.
[4] 许雪梅. 基于模拟退火算法改进遗传算法的织物智能配色[J]. 纺织学报, 2021, 42(07): 123-128.
[5] 杜劲松, 余雅芸, 赵妮, 谢子昂, 费中华, 潘静姝. 不同类型服装企业智能制造能力成熟度评价模型[J]. 纺织学报, 2021, 42(05): 162-167.
[6] 周亚勤, 王攀, 张朋, 张洁. 纬编织造车间生产调度方法研究[J]. 纺织学报, 2021, 42(04): 170-176.
[7] 张卓, 丛洪莲, 蒋高明, 董智佳. 基于交互式遗传算法的Polo衫快速款式推荐系统[J]. 纺织学报, 2021, 42(01): 138-144.
[8] 李亮, 倪俊芳. 绗缝机花样加工代码自动生成算法[J]. 纺织学报, 2020, 41(11): 162-167.
[9] 谢子昂, 杜劲松, 赵国华. 衬衫吊挂流水线的自适应动态调度[J]. 纺织学报, 2020, 41(10): 144-149.
[10] 张晓侠, 刘凤坤, 买巍, 马崇启. 基于BP神经网络及其改进算法的织机效率预测[J]. 纺织学报, 2020, 41(08): 121-127.
[11] 黄珍珍, 莫碧贤, 温李红. 基于遗传算法及仿真技术的服装生产流水线平衡[J]. 纺织学报, 2020, 41(07): 154-159.
[12] 郑小虎, 鲍劲松, 马清文, 周衡, 张良山. 基于模拟退火遗传算法的纺纱车间调度系统[J]. 纺织学报, 2020, 41(06): 36-41.
[13] 于小利, 金娟凤, 黄珍珍, 闾慧珠. 面向中小型服装企业的个性化定制订单管理体系构建[J]. 纺织学报, 2020, 41(06): 132-140.
[14] 莫帅, 冯战勇, 唐文杰, 党合玉, 邹振兴. 基于神经网络和遗传算法的锭子弹性管性能优化[J]. 纺织学报, 2020, 41(04): 161-166.
[15] 黄淇, 周其洪, 张倩, 王绍宗, 范伟, 孙会丰. 基于系统布置设计-遗传算法的纱线浸染生产线布局优化[J]. 纺织学报, 2020, 41(03): 84-90.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!