纺织学报 ›› 2022, Vol. 43 ›› Issue (05): 104-108.doi: 10.13475/j.fzxb.20210505605

• 纺织工程 • 上一篇    下一篇

色纺针织物紧密程度对颜色预测的影响

杨柳1, 李羽佳1, 张鑫1, 何文婧1, 童胜昊2, 马磊3, 张毅4, 张瑞云1,5()   

  1. 1.东华大学 纺织面料技术教育部重点实验室, 上海 201620
    2.浙江金梭纺织有限公司,浙江 金华 321000
    3.中国纺织信息中心, 北京 100020
    4.浙江省常山纺织有限责任公司,浙江 衢州 324200
    5.上海市纺织智能制造与工程一带一路国际联合实验室, 上海 200051
  • 收稿日期:2021-05-20 修回日期:2022-01-23 出版日期:2022-05-15 发布日期:2022-05-30
  • 通讯作者: 张瑞云
  • 作者简介:杨柳(1992—),女,博士生。主要研究方向为色纺织物计算机测配色。
  • 基金资助:
    上海市科学技术委员会“科技创新行动计划”“一带一路”国际合作项目(21130750100);中央高校基本科研业务费专项资金资助项目(CUSF-DH-D-2018038);国家留学基金委员会资助项目(201806630110)

Effect of tightness of colored knitted fabrics on color prediction

YANG Liu1, LI Yujia1, ZHANG Xin1, HE Wenjing1, TONG Shenghao2, MA Lei3, ZHANG Yi4, ZHANG Ruiyun1,5()   

  1. 1. Key Laboratory of Textile Science & Technology, Ministry of Education, Donghua University, Shanghai 201620, China
    2. Zhejiang Jinsuo Textiles Co., Ltd., Jinhua, Zhejiang 321000, China
    3. China Textile Information Center, Beijing 100020, China
    4. Zhejiang Changshan Textile Co., Ltd., Quzhou, Zhejiang 324200, China
    5. Shanghai Belt and Road Joint Laboratory of Textile Intelligent, Shanghai 200051, China
  • Received:2021-05-20 Revised:2022-01-23 Published:2022-05-15 Online:2022-05-30
  • Contact: ZHANG Ruiyun

摘要:

为优化颜色预测模型,引入织物紧密程度常数,探究色纺针织物紧密程度对颜色预测的影响。采用红和蓝2种色纤维织造不同紧密程度的织物,选用常用的Stearns-Noechel模型为颜色预测模型,求解模型中的待定参数M时,以拟合色差最小时的M值为最优参数,对比引入常数前后的预测结果。结果表明:未引入织物紧密程度常数时,所得到的M值较引入常数后得到的Mp小;当织物组织相同时,随着织物紧密程度逐渐变小,M值变化很小(0.226 5~0.221 6),而Mp值却有逐渐增大的趋势(0.292 1~0.347 1);当弯纱深度一致时,M值随着织物紧密程度的增加,有变大的趋势,但Mp值变化趋势却不明显;引入织物紧密程度常数后,预测平均色差都更小。

关键词: 色纺针织物, 织物紧密程度, 颜色预测, 织物孔隙, 色差

Abstract:

In order to improve color prediction modeling, this research took fabric tightness into consideration, and then the influence of the tightness of the fiber-colored knitted fabric on the color prediction was studied. Red and blue pre-colored fibers were used to produce knitted fabrics with different tightness. The fabric surface porosity was used to describe the fabric tightness, and Stearns-Noechel model, one of the most commonly used color prediction models, was selected to predict the color of fabrics. When computing the unknown parameter M in the prediction model, the value of M corresponding to the minimum predicted color difference was selected as the optimal parameter. The results show that when the fabric tightness was not added, the M values obtained were smaller than that of the Mp which were computed when the fabric tightness value was added. When the fabric structures were the same and the tightness of the fabric gradually decreased, the M values hardly change (0.226 5-0.221 6), whereas Mp increased gradually (0.292 1-0.347 1). When the sinking depth of yarns was kept constantly, the M values increased as the fabric became tighter, but the changing of Mp is not obvious. It was obvious that the predicted average color difference became smaller after adding the fabric tightness as a constant into calculation of M.

Key words: colored knitted fabric, fabric tightness, color prediction, fabric porosity, color difference

中图分类号: 

  • TS181.8

图1

Image J 图像处理"

表1

预测模型中参数M取值及相应预测色差"

织物 未引入织物紧密程度常数 引入织物紧密程度常数
M CMC Mp CMC
平针70度目 0.226 5 2.18 0.292 1 2.01
平针80度目 0.226 0 2.12 0.316 0 1.90
平针90度目 0.221 6 2.25 0.347 1 1.97
1+1罗纹80度目 0.248 6 2.36 0.322 4 2.20
双反面80度目 0.281 0 3.18 0.302 4 3.13

表2

单层和4层色纺针织物间平均色差"

织物 ELAB CMC E00
平针70度目 0.448 0.276 0.235
平针80度目 0.356 0.236 0.222
平针90度目 0.514 0.282 0.216
1+1罗纹80度目 0.196 0.123 0.111
双反面80度目 0.280 0.172 0.136
平均值 0.359 0.218 0.184

图2

预测模型未知参数与不同紧密程度织物关系图"

图3

不同紧密程度织物的目标样反射率和预测反射率"

[1] 钱爱芬. 色纺纱产品特点及调配色原理[J]. 棉纺织技术, 2010, 38(11):66-68.
QIAN Aifen. Colored spun yarn characteristic and color mixing & matching principle[J]. Cotton Textile Technology, 2010, 38(11):66-68.
[2] 张毅. 色纺纱生产节约用工与提高品质方法分析[J]. 现代纺织技术, 2011, 19(5):14-16.
ZHANG Yi. Analysis of methods to save labor and improve quality in dyed yarn production[J]. Advanced Textile Technology, 2011, 19 (5):14-16.
[3] SAEIDEH Gorjikandi, MOHAMMAD Amanitehran. Colour dependency of textile samples on the surface texture[J]. Society of Dyers and Colourists, 2008, 124(6): 348-354.
[4] 杨文芳, 路硕, 李昌垒, 等. 捻度对有色粘胶纱颜色的影响[J]. 棉纺织技术, 2016, 44(1):22-24.
YANG Wenfang, LU Shuo, LI Changlei, et al. Influence of twist on the color of colored viscose yarn[J]. Cotton Textile Technology, 2016, 44(1):22-24.
[5] 何文婧, 孙茂杨, 杨柳, 等. 织物结构对色纺纱针织物呈色效果的影响[J]. 针织工业, 2019(12):53-56.
HE Wenjing, SUN Maoyang, YANG Liu, et al. Influence of fabric structure on color effect of dyed-yarn knitted fabrics[J]. Knitting Industries, 2019(12):53-56.
[6] STEARNS Ei, NOECHELF. Spectrophotometric prediction of color of wool blends[J]. American Dyestuff Reporter, 1944, 33(9): 177-180.
[7] DUNTLEY S Q. The prediction and control of colored fiber blends by optical means[J]. Am Dyest Rep, 1941, 30:698-700.
[8] FRIELE L F C. The application of colour measurement in relation to fiberblending[J]. Journal of The Textile Institute Proceedings, 1952, 43(8): 604-611.
[9] WALOWIT E, MCCARTHY C J, BERNS R S. An algorithm for the optimization of kubelka-munk absorption and scattering coefficients[J]. Color Research & Application, 2010, 12(6):340-343.
[10] 赵超, 杨彩云. 弯纱深度与针织物结构参数及导热系数间的关系[J]. 国际纺织导报, 2015, 43(11):22-24.
ZHAO Chao, YANG Caiyun. The relationship between the sinking depth and structure parameters and thermal conductive performance of knitted fabric[J]. Melliand China, 2015, 43(11):22-24.
[11] 白婧, 杨柳, 张毅, 等. 纯棉色纺纱配色中的Stearns-Noechel模型参数优化[J]. 纺织学报, 2018, 39(3):31-37.
BAI Jing, YANG Liu, ZHANG Yi, et al. Parameters optimization of Stearns-Noechel model in color matching of cotton colored spun yarn[J]. Journal of Textile Research, 2018, 39(3):31-37.
doi: 10.1177/004051756903900105
[12] YANG Liu, BAI Jing, ZHANG Ruiyun, et al. The optimization of color-prediction models for colored cotton fiber yarns[J]. Textile Research Journal, 2019, 89(19/20): 4007-4014.
doi: 10.1177/0040517519826892
[13] 李启正. 机织物的交织混色规律及颜色预测模型研究[D]. 杭州: 浙江理工大学, 2015:42.
LI Qizheng. Study on color mixing law and color prediction model for interwoven fabrics[D]. Hangzhou: Zhejiang Sci-Tech University, 2015:42.
[1] 张爱丹, 郭珍妮, 汪阳子. 模块组合全显色结构提花织物设计与仿色优化比较[J]. 纺织学报, 2021, 42(10): 67-74.
[2] 许雪梅. 基于模拟退火算法改进遗传算法的织物智能配色[J]. 纺织学报, 2021, 42(07): 123-128.
[3] 裘柯槟, 陈维国, 周华. 用光谱成像技术与分光光度法测量织物颜色的比较分析[J]. 纺织学报, 2020, 41(11): 73-80.
[4] 程璐, 陈婷婷, 曹吉强, 王颖, 夏鑫. 基于光谱反射率的色纺纱计算机修色算法[J]. 纺织学报, 2020, 41(09): 39-44.
[5] 应双双, 裘柯槟, 郭宇飞, 周赳, 周华. 纺织品色彩管理色表测量数据的误差优化[J]. 纺织学报, 2020, 41(08): 74-80.
[6] 张戈, 周建, 王蕾, 潘如如, 高卫东. 用分光光度计法测量纤维颜色的影响因素[J]. 纺织学报, 2020, 41(04): 72-77.
[7] 杨红英, 惠志奎, 杨志晖, 张靖晶, 谢宛姿, 周金利. 基于汉风色典的不同色差公式的色差均匀性[J]. 纺织学报, 2020, 41(02): 103-108.
[8] 赵博研, 赵玉珠. 光致变色纺织品的检测方法[J]. 纺织学报, 2019, 40(08): 124-129.
[9] 黄嘉俊, 柯薇, 王静, 邓中民. 基于计算机视觉的牛仔服装色差检测评级系统[J]. 纺织学报, 2019, 40(05): 163-169.
[10] 袁理 代乔民 付顺林 郑力文 鄢煜尘. 基于原色纤维混配色织物的呈色特性与影响因素分析[J]. 纺织学报, 2018, 39(10): 38-43.
[11] 辛春莉 王子玉 周建 潘如如 高卫东. 数码相机在染色织物色差测量中的应用[J]. 纺织学报, 2018, 39(08): 77-82.
[12] 白婧 杨柳 张毅 张瑞云 马颜雪 俞建勇 程隆棣. 纯棉色纺纱配色中的Stearns-Noechel模型参数优化[J]. 纺织学报, 2018, 39(03): 31-37.
[13] 马崇启 程璐 王玉娟 刘建勇 朱宝基. 基于Friele模型的彩色纤维混色配方算法[J]. 纺织学报, 2017, 38(12): 33-37.
[14] 李启正 朱炜婧 金肖克 祝成炎. 原液着色涤纶交织混色织物的颜色预测模型[J]. 纺织学报, 2017, 38(07): 56-62.
[15] 马崇启 王玉娟 刘建勇 程璐. 不同纺纱流程下色纺纱色差对比[J]. 纺织学报, 2017, 38(01): 29-34.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!