纺织学报 ›› 2022, Vol. 43 ›› Issue (02): 89-97.doi: 10.13475/j.fzxb.20210601309

• 纺织工程 • 上一篇    下一篇

CuO/聚丙烯/乙烯-辛烯共聚物复合熔喷非织造材料的制备及其吸油性能

赵家明1,2, 孙辉1,2(), 于斌1,2, 杨潇东1,2   

  1. 1.浙江理工大学 纺织科学与工程学院(国际丝绸学院), 浙江 杭州 310018
    2.产业用纺织材料制备技术浙江省重点实验室, 浙江 杭州 310018
  • 收稿日期:2021-06-03 修回日期:2021-11-22 出版日期:2022-02-15 发布日期:2022-03-15
  • 通讯作者: 孙辉
  • 作者简介:赵家明(1995—),男,硕士生。主要研究方向为熔喷非织造材料的吸油改性。
  • 基金资助:
    浙江省自然科学基金项目(LY19E030011)

Preparation of CuO/polypropylene/ethylene-octene copolymer composite melt-blown nonwovens and their oil absorption properties

ZHAO Jiaming1,2, SUN Hui1,2(), YU Bin1,2, YANG Xiaodong1,2   

  1. 1. College of Textile Science and Engineering (International Institute of Silk), Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
    2. Zhejiang Provincial Key Laboratory of Preparation Technology of Industrial Textile Materials, Hangzhou, Zhejiang 310018, China
  • Received:2021-06-03 Revised:2021-11-22 Published:2022-02-15 Online:2022-03-15
  • Contact: SUN Hui

摘要:

为高效经济地处理油品泄漏引起的污染问题,利用聚丙烯(PP)与乙烯-辛烯共聚物(POE)共混后制备复合熔喷非织造材料,然后在其表面负载纳米氧化铜(CuO)进行疏水改性。对改性前后非织造材料的形貌、结构、水接触角、吸油和力学性能等进行测试。结果表明:负载纳米CuO后,CuO/PP/POE复合熔喷非织造材料的结晶度下降,熔融和结晶温度无明显变化,水接触角下降约1°,亲水性略有上升;相对于纯PP非织造材料,负载纳米CuO后复合熔喷非织造材料的吸油率得到提高,添加POE质量分数为15%的熔喷非织造材料对机油的吸油率最高达9.22 g/g,对硅油的吸油率最高达9.4 g/g,且其断裂强力增加,但断裂伸长率降低。

关键词: 聚丙烯, 乙烯-辛烯共聚物, 熔喷非织造材料, 氧化铜, 吸油效率, 油水处理

Abstract:

In order to efficiently and economically deal with the pollution caused by oil leakage, the melt-blown nonwoven materials (MB) was prepared by the blending of polypropylene (PP) and ethylene-octene copolymer (POE). The surface of the composite melt-blown nonwoven material was loaded with nano-copper oxide (CuO) for hydrophobic modification. The morphology, structure, water contact angle, oil absorption and mechanical properties of the nonwovens before and after modification were tested. The results show that the deposition of nano CuO causes the crystallinity of CuO/PP/POE composites to decrease, but no significant change in the melting and crystallization temperatures. In addition the deposition of nano CuO resulted in about 1°decrease in the water contact angle, and the hydrophilicity increases slightly. Compared with the pure PP nonwovens, the oil absorption rate of the composite melt-blown nonwovens loaded with nano-CuO is improved. The oil absorption rate of melt-blown nonwovens with POE content of 15% is up to 9.22 g/g for machine oil and 9.4 g/g for silicone oil, and the longitudinal fracture strength is increased, but the elongation at break is decreased.

Key words: polypropylene, ethylene-octene copolymer, melt-blown nonwoven material, copper oxide, oil absorption efficiency, oil water treatment

中图分类号: 

  • TS176

表1

熔喷非织造材料组成配比表"

样品
编号
PP质量
分数/%
POE质量
分数/%
CuO占总质量
分数/%
1# 100 0
2# 90 10
3# 85 15
4# 80 20
5# 90 10 0.125
6# 85 15 0.125
7# 80 20 0.125

表2

熔喷工艺参数"

机头
温度/
螺杆
温度/
物料
温度/
热风
温度/
气道
压力/
MPa
熔喷
压力/
MPa
接收
距离/
cm
平台
速度/
(mm·s-1)
185 180~200 180 280 0.2 0.4 20 0.5

图1

纯PP、PP/POE和CuO/PP/POE熔喷非织造材料的扫描电镜照片"

表3

CuO/PP/POE复合熔喷非织造材料元素分析表"

样品编号 元素质量分数/%
C O Cu
5# 64.00 10.83 25.17
6# 71.90 8.23 19.86
7# 72.93 8.33 18.74

图2

纯PP和PP/POE熔喷非织造材料孔径分布图"

表4

纯PP和PP/POE熔喷非织造材料平均直径"

样品编号 平均直径
1# 5.86±0.13
2# 3.15±0.09
3# 3.06±0.12
4# 2.65±0.09

图3

纯PP、PP/POE和CuO/PP/POE熔喷非织造材料的XRD图谱"

表5

纯PP、PP/POE和CuO/PP/POE熔喷非织造材料的热性能参数"

样品编号 Tc/℃ Tm/℃ Xcd/% Xcx/%
1# 111.98 156.45 41.99 43.16
2# 119.28 158.8 51.63 46.65
3# 124.24 159.63 45.44 55.88
4# 118.75 158.28 49.68 25.78
5# 118.14 157.19 41.93 44.38
6# 123.85 158.74 41.78 50.56
7# 119.85 157.9 43.11 23.51

图4

纯PP、PP/POE和CuO/PP/POE熔喷非织造材料的第2次升温曲线和第1次降温曲线"

表6

纯PP、PP/POE和CuO/PP/POE熔喷非织造材料的水接触角"

样品编号 水接触角
1# 143.2±0.34
2# 145.2±0.13
3# 146.0±0.17
4# 145.3±0.21
5# 144.4±0.21
6# 145.3±0.19
7# 143.8±0.37

图5

纯PP、PP/POE和CuO/PP/POE熔喷非织造材料对硅油和机油的重复吸油曲线"

图6

CuO/PP/POE复合熔喷非织造材料的吸油机制"

图7

纯PP、PP/POE和CuO/PP/POE熔喷非织造材料的应力-应变曲线"

表7

纯PP、PP/POE和CuO/PP/POE熔喷非织造材料力学性能数据"

样品 断裂强力/N 断裂伸长率/%
1# 5.86±0.27 20.89±3.33
2# 8.86±0.89 24.83±5.48
3# 9.30±0.86 26.56±5.75
4# 6.17±0.54 29.22±3.64
5# 10.09±1.99 13.33±2.01
6# 10.19±0.37 18.57±4.66
7# 7.45±0.38 25.40±3.08
[1] LIU F, MA M L, ZANG D L, et al. Fabrication of superhydrophobic/superoleophilic cotton for application in the field of water/oil separation[J]. Carbohydrate Polymers, 2014:480-487.
[2] 陆平, 王晓丽, 彭士涛, 等. 高吸油材料的研究进展[J]. 现代化工, 2019, 39(4): 24-26.
LU Ping, WANG Xiaoli, PENG Shitao, et al. Research progress of high oil absorbent materials[J]. The Modern Chemical Industry, 2019, 39(4): 24-26.
[3] 杨双华, 邵高耸, 卢林刚. 常见吸油材料的研究进展及展望[J]. 应用化工, 2019, 48(4): 926-937.
YANG Shuanghua, SHAO Gaosong, LU Lingang, et al. Research progress and prospect of common oil absorbent materials[J]. Application of Chemical, 2019, 48(4): 926-937.
[4] ZHAO J, XIAO C F, XU N K. Evaluation of polypropylene and poly(butylmethacrylate-co-hydroxyethylmethacrylate)nonwoven material as oil absorbent[J]. Environmental Science and Pollution Research International, 2013, 20:4137-4145.
doi: 10.1007/s11356-012-1397-8
[5] BAIG N, SALEH T A. Photochemically produced superhydrophobic silane@polystyrene-coated polypropylene fibrous network for oil/water separation[J]. Chemistry, An Asian Journal, 2021, 16(4): 329-341.
doi: 10.1002/asia.v16.4
[6] LEE Y, KIM J, KIM D, et al. Effect of blend ratio of PP/kapok blend nonwoven fabrics on oil sorption capacity[J]. Environmental Technology, 2013, 34(24): 3169-3175.
doi: 10.1080/09593330.2013.808242
[7] BAIG N, SALEH T A. Superhydrophobic polypropylene functionalized with nanoparticles for efficient fast static and dynamic separation of spilled oil from water[J]. Global Challenges, 2019, 3(8): 1800115-1800124.
doi: 10.1002/gch2.v3.8
[8] 刘江, 余双平, 傅利玉, 等. DSC测定PP熔点过程中实验条件的优化[J]. 工程塑料应用, 2014, 24(1): 88-92.
LIU Jiang, YU Shuangping, FU Liyu, et al. Optimization of experimental conditions in the process of determining PP melting point by DSC[J]. Application of Engineering Plastics, 2014, 24(1): 88-92.
[9] 朱斐超, 于斌, 韩建, 等. 熔喷非织造用 PHBV/PLA 共混体系的结构与相容性[J]. 高分子材料科学与工程, 2014, 30(8): 81-84.
ZHU Feichao, YU Bin, HAN Jian, et al. Structure and compatibility of PHBV/PLA blend system for melt-blown nonwovens[J]. Polymer Materials Science and Engineering, 2014, 30(8): 81-84.
[10] 王钦, 封严, 赵东. 聚酯/锦纶6双组分纺粘水刺非织造布光接枝亲水亲油改性[J]. 纺织学报, 2015, 36(11): 99-102.
WANG Qin, FENG Yan, ZHAO Dong, et al. Hydrophilic and lipophilic modification of polyester/nylon 6 two-component spunbonded spunlaced nonwovens by grafting[J]. Journal of Textile Research, 2015, 36(11): 99-102.
doi: 10.1177/004051756603600201
[11] 徐家福, 杨雅光, 郭秉臣, 等. 熔喷法非织造布结构与性能分析[J]. 非织造布, 2005, 13(3): 35-39.
XU Jiafu, YANG Yaguang, GUO Bingchen, et al. Structure and property analysis of melt-blown nonwovens[J]. Nonwoven Fabric, 2015, 13(3): 35-39.
[12] 杨明涛. POE含量对PP/POE挤出发泡形态调控的影响[J]. 塑料, 2021, 50(4): 48-53.
YANG Mingtao. Effect of POE content on morphology regulation of PP/POE extrusion[J]. Plastic, 2021, 50(4): 48-53.
[13] PU Y, ZHENG J, CHEN F X, et al. Preparation of polypropylene micro and nanofibers by electrostatic-assisted melt blown and their application[J]. Polymers, 2018, 10(9): 959-970.
doi: 10.3390/polym10090959
[14] WANG X, HU S, GUO Y, et al. Toughened high-flow polypropylene with polyolefin-based elastomers[J]. Polymers, 2019, 11(12): 1976-1991.
doi: 10.3390/polym11121976
[15] YANG J M, GAO M Z, ZHAO H, et al. Space charge characteristics of polypropylene modified by rare earth nucleating agent for β crystallizatio[J]. Materials, 2019, 12(1): 42-54.
doi: 10.3390/ma12010042
[16] AMR F, SALEM S S, AHMED R W, et al. Optimization of green biosynthesized visible light active CuO/ZnO nano-photocatalysts for the degradation of organic methylene blue dye[J]. Heliyon, 2020, 6(9): 04896-04908.
[17] HE X, RYOLUOTO L, ANYSZKA R, et al. Surface modification of fumed silica by plasma polymerization of acetylene for PP/POE blends dielectric nanocomposites[J]. Polymers, 2019, 11(12): 1957-1978.
doi: 10.3390/polym11121957
[18] 刘艳军. PP/POE共混物的热性能和结晶行为研究[J]. 山西化工, 2019, 39(1): 1-3.
LIU Yanjun. Study on thermal properties and crystallization behavior of PP/POE blends[J]. Shanxi Chemical Industry, 2019, 39(1): 1-3.
[19] 王晓, 王辉, 许婷娟, 等. 热氧处理聚丙烯粉料的DSC曲线双峰研究[J]. 广东化工, 2014, 41(22): 1-2.
WANG Xiao, WANG Hui, XU Tingjuan, et al. Study on DSC bimodal curves of polypropylene powder treated by thermal oxygen[J]. Guangdong Chemical Industry, 2014, 41(22): 1-2.
[20] CHI X H, CHENG L, LIU W F, et al. Characterization of polypropylene modified by blending elastomer and nano-silica[J]. Materials, 2018, 11(8): 1321-1333.
doi: 10.3390/ma11081321
[21] WANG G X, LI S, FENG Y L, et al. Effectively toughening polypropylene with in situ formation of core-shell starch-based particles[J]. Carbohydrate Polymers, 2020, 249:116795-116801.
doi: 10.1016/j.carbpol.2020.116795
[22] LI C, REN L P, LIU X, et al. Superhydrophilic and underwater superoleophobic poly (propylene) nonwoven coated with TiO2 by atomic layer deposition[J]. Advanced Materials Interfaces, 2021, 8(1): 2001485.
doi: 10.1002/admi.v8.1
[23] 詹斌. 仿生超润湿表面的制备及其油水分离性能研究[D]. 长春: 吉林大学, 2021:24-26.
ZHAN Bin. Research on the preparation of bionic super-wetting surface and its oil-water separation perfor-mance[D]. Changchun: Jilin University, 2021: 24-26.
[24] HOU J, ZHAO G, ZHANG L, et al. High-expansion polypropylene foam prepared in non-crystalline state and oil adsorption performance of open-cell foam[J]. Journal of Colloid and Interface Science, 2019, 542:233-242.
doi: 10.1016/j.jcis.2019.02.028
[25] 尹朝清, 刘乐文, 张爽爽. 刚性粒子/POE对聚丙烯的协同增韧机制[J]. 塑料, 2019, 48(1): 53-57.
YIN Chaoqing, LIU Lewen, ZHANG Shuangshuang. Synergistic toughening mechanism of polypropylene by rigid particle/POE[J]. Plastic, 2019, 48(1): 53-57.
[26] 黄景莹. 改性熔喷聚丙烯非织造布的制备和性能研究[D]. 上海:东华大学, 2011:51-52.
HUANG Jingying. Preparation and properties of modified melt-blown polypropylene nonwovens[D]. Shanghai: Donghua University, 2011: 51-52.
[27] 覃韦崴, 李磊, 覃芳军, 等. CaCO3/弹性体协同增韧PP的研究进展[J]. 广东化工, 2021, 48(3): 66-67.
QIN Weiwei, LI Lei, QIN Fangjun, et al. Research progress of synergistic toughening PP by CaCO3/elastomer[J]. Guangdong Chemical Industry, 2021, 48(3): 66-67.
[28] LIANG J Z, ZHU B, MA W Y. Morphology and mechanical properties of PP/POE/nano-CaCO3 composites[J]. Polymer Composites, 2016, 37(2): 539-546.
doi: 10.1002/pc.v37.2
[29] MIRJALILI F, CHUAH L, SALAHI E. Mechanical and morphological properties of polypropylene/nano α-Al2O3 composites[J]. The Scientific World Journal, 2014(4): 718765.
[1] 徐兆宝, 何翠, 赵瑾朝, 黄乐平. 同轴静电纺多级微纳米纤维膜的制备及其相变调温性能[J]. 纺织学报, 2022, 43(02): 69-73.
[2] 贾琳, 王西贤, 李环宇, 张海霞, 覃小红. 聚丙烯腈/BaTiO3复合纳米纤维过滤膜的制备及其性能[J]. 纺织学报, 2021, 42(12): 34-41.
[3] 宋雪旸, 张岩, 徐成功, 王萍, 阮芳涛. 碳纤维/聚丙烯/聚乳酸增强复合材料的力学性能[J]. 纺织学报, 2021, 42(11): 84-88.
[4] 权震震, 王亦涵, 祖遥, 覃小红. 多曲面喷头静电纺射流形成机制与成膜特性[J]. 纺织学报, 2021, 42(09): 39-45.
[5] 高猛, 王增元, 漏琦伟, 陈钢进. 电晕驻极熔喷聚丙烯驻极体非织造布的电荷捕获特性[J]. 纺织学报, 2021, 42(09): 52-58.
[6] 阳智, 刘呈坤, 吴红, 毛雪. 木质素/聚丙烯腈基碳纤维的制备及其表征[J]. 纺织学报, 2021, 42(07): 54-61.
[7] 刘晓倩, 陈玉, 周惠敏, 闫源, 夏鑫. 等离子体接枝丙烯酸改性聚丙烯腈导电纳米纤维纱线的制备[J]. 纺织学报, 2021, 42(05): 109-114.
[8] 刘朝军, 刘俊杰, 丁伊可, 马少锋, 张秀琴, 张建青. 空气过滤用高容尘膨体聚四氟乙烯复合材料的制备及其性能[J]. 纺织学报, 2021, 42(05): 31-37.
[9] 王慧云, 王萍, 李媛媛, 张岩. 中空多孔异形聚丙烯腈纤维的制备及其性能[J]. 纺织学报, 2021, 42(03): 50-55.
[10] 张雪飞, 李婷婷, 许炳铨, 林佳弘, 楼静文. 用低温界面聚合法制备多功能核壳结构热电织物[J]. 纺织学报, 2021, 42(02): 174-179.
[11] 蔡露, 康佳良, 吕存, 何雪梅. 自交联氟化聚丙烯酸酯乳液的制备及其应用性能[J]. 纺织学报, 2021, 42(02): 161-167.
[12] 郭雪松, 顾嘉怡, 胡建臣, 魏真真, 赵燕. 聚丙烯腈/羧基丁苯乳胶复合纳米纤维膜的制备及其性能[J]. 纺织学报, 2021, 42(02): 34-40.
[13] 孙倩, 阚燕, 李晓强, 高德康. 聚丙烯腈/氯化钴纳米纤维比色湿度传感器的制备及其性能[J]. 纺织学报, 2020, 41(11): 27-33.
[14] 乔燕莎, 王茜, 李彦, 桑佳雯, 王璐. 聚多巴胺涂层聚丙烯疝气补片的制备及其体外炎性反应[J]. 纺织学报, 2020, 41(09): 162-166.
[15] 朵永超, 钱晓明, 赵宝宝, 钱幺, 邹志伟. 超细纤维合成革基布的制备及其性能[J]. 纺织学报, 2020, 41(09): 81-87.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 姬长春, 张开源, 王玉栋, 王新厚. 熔喷三维气流场的数值计算与分析[J]. 纺织学报, 2019, 40(08): 175 -180 .
[2] 孙光武, 李杰聪, 辛三法, 王新厚. 基于非牛顿流体本构方程的熔喷纤维直径预测[J]. 纺织学报, 2019, 40(11): 20 -25 .
[3] 甄琪, 张恒, 朱斐超, 史建宏, 刘雍, 张一风. 聚丙烯/聚酯双组分微纳米纤维熔喷非织造材料制备及其性能[J]. 纺织学报, 2020, 41(02): 26 -32 .
[4] 李辉芹, 张楠, 温晓丹, 巩继贤, 赵晓明, 王支帅. 纤维材料降噪结构体的研究进展[J]. 纺织学报, 2020, 41(03): 175 -181 .
[5] 张星, 刘金鑫, 张海峰, 王玉晓, 靳向煜. 防护口罩用非织造滤料的制备技术与研究现状[J]. 纺织学报, 2020, 41(03): 168 -174 .
[6] 孙焕惟, 张恒, 甄琪, 朱斐超, 钱晓明, 崔景强, 张一风. 丙烯基纳微米弹性过滤材料的熔喷成型及其过滤性能[J]. 纺织学报, 2020, 41(10): 20 -28 .
[7] 王玉栋, 姬长春, 王新厚, 高晓平. 新型熔喷气流模头的设计与数值分析[J]. 纺织学报, 2021, 42(07): 95 -100 .
[8] 高猛, 王增元, 漏琦伟, 陈钢进. 电晕驻极熔喷聚丙烯驻极体非织造布的电荷捕获特性[J]. 纺织学报, 2021, 42(09): 52 -58 .
[9] 胡侨乐, 边国丰, 邱夷平, 魏毅, 徐珍珍. 高速列车地板用蜂窝夹芯结构复合材料隔声性能[J]. 纺织学报, 2021, 42(10): 75 -83 .
[10] 王晓辉, 刘国金, 邵建中. 纺织品仿生结构生色[J]. 纺织学报, 2021, 42(12): 1 -14 .