纺织学报 ›› 2023, Vol. 44 ›› Issue (06): 200-206.doi: 10.13475/j.fzxb.20210601601

• 机械与器材 • 上一篇    下一篇

基于Flow Simulation的喷气织机辅助喷嘴喷孔结构优化

樊百林1(), 张昌睿1, 郭佳华1, 黄钢汉2, 尉国梁3   

  1. 1.北京科技大学 机械工程学院, 北京 100083
    2.北京科技大学科技产业集团, 北京 100083
    3.北创营科技孵化器有限公司, 北京 100083
  • 收稿日期:2021-12-04 修回日期:2023-02-26 出版日期:2023-06-15 发布日期:2023-07-20
  • 作者简介:樊百林(1965—),女,副教授,硕士。主要研究方向为机械设计及理论。E-mail:fanbailinsz@ustb.edu.cn
  • 基金资助:
    北京高等学校高水平人才交叉培养“实培计划”(2020)

Nozzle structure optimization based on Flow Simulation for air-jet weaving

FAN Bailin1(), ZHANG Changrui1, GUO Jiahua1, HUANG Ganghan2, WEI Guoliang3   

  1. 1. School of Mechanical Engineering, Beijing University of Science and Technology, Beijing 100083, China
    2. Science and Technology Industry Group of Beijing University of Science and Technology, Beijing 100083, China
    3. Bei Chuang Ying Technology Incubator Co., Ltd., Beijing 100083, China
  • Received:2021-12-04 Revised:2023-02-26 Published:2023-06-15 Online:2023-07-20

摘要:

为提升辅助喷嘴引纬的综合性能,以喷气织机辅助喷孔为研究对象,采用Solidworks软件结构优化方法,对辅助喷嘴喷孔的流体性能进行了数值模拟。通过构建单圆孔、双圆孔、矩形孔3种辅助喷嘴喷孔流场三维模型,在0.4 MPa的工作环境压力下,分别研究了距喷口40 mm处截面的气流速度分布情况、辅助喷嘴的最大气流速度及辅助喷嘴入口处的质量流量情况。研究结果表明:在单圆孔辅助喷嘴锥度为正方向4°时综合性能最优,引纬稳定性最好,取得较大气流速度和最小质量流量,与锥度0°相比,最大气流速度增加了3.03%;对于双圆孔辅助喷嘴,采用上方喷孔直径1.5 mm、下方喷孔直径0.8 mm和两孔中心距离2.2 mm时获得最优结果;长宽比为2.3的矩形孔辅助喷嘴综合性能最优。

关键词: 喷气织机, 辅助喷嘴, 喷孔, 数值模拟, 优化分析

Abstract:

Objective The key technology to improve the quality and reduce the cost of air-jet loom was to increase the flying speed of weft yarn, improve the quality of air-flow synthesis and reduce the air consumption. In order to improve the comprehensive performance of the auxiliary nozzle for weft insertion of air-jet weaving machines, the optimal model structure of the auxiliary nozzle orifice was simulated and optimized, so as to achieve the optimal weft insertion performance.
Method The Flow Simulation plug-in module in Solidworks software was used in the research, which is a CFD numerical simulation plug-in based on the finite volume method. Flow Simulation is a fully integrated software in Solidworks. The proven computational fluid dynamics (CFD) technology was used to calculate the fluid (gas or liquid) flow inside and outside the Solidworks model. At the same time, the heat transitive model (from models, between models and inside models) caused by convective radiation and conduction will also have an impact. The structural optimization method of Solidworks software was employed to simulate the fluid performance of the auxiliary nozzle orifice. Three dimensional models of the flow field of the auxiliary nozzle orifice with single round hole, double round hole and rectangular hole was constructed to evaluate, the velocity distribution at the section 40 mm away from the nozzle, maximum flow rate of auxiliary nozzle and the mass flow at the inlet of the auxiliary nozzle under the working environment pressure of 0.4 MPa.
Results For a single circular hole auxiliary nozzle, when the cone angle was set to 4°in the positive direction, better results were obtained, and the weft insertion stability was good. A high airflow speed and minimum mass flow rate could increase the weft insertion speed while ensuring the stability of the weft insertion without increasing gas consumption. Compared to the unoptimized model with a cone angle of 0°, when the cone angle was set to 4 ° in the positive direction, the stability of the weft insertion slightly increased, and the maximum flow velocity of the airflow field increased by 3.03%, with the same gas consumption as at 0°.For the double circular hole auxiliary nozzle, group D achieved relatively good results, with good weft insertion stability and slight airflow velocity and mass flow rate increase, which could increase the weft insertion speed while ensuring the stability of the weft insertion, but slightly increased the gas consumption. Compared to the group C before optimization, the stability of group D slightly increased, with a maximum flow rate increase of 0.908%, increased gas consumption by 6.25%. For the rectangular auxiliary nozzle, group B achieved relatively good results. At this time, the stability of weft insertion was good, the airflow speed was slightly increased, and the mass flow rate remained unchanged. On the basis of ensuring the stability of weft insertion, the weft insertion speed could be increased without increasing gas consumption. Compared to group A before optimization, the stability of group B was slightly increased and its maximum flow rate was 2.8%.
Conclusion Flow Simulation plug-in module in Solidworks software is used to analyze the velocity distribution of the section of the auxiliary nozzle with single circular hole, double circular hole and rectangular circular hole at the distance of 40 mm from the nozzle, maximum flow rate of auxiliary nozzle and the mass flow at the inlet of the auxiliary nozzle under the working environment pressure of 0.4 MPa, and then optimize the structure of the auxiliary nozzle to obtain the optimal results. ①For the single round hole auxiliary nozzle, when the cone angle is 4° in the positive direction, the better results are obtained. At this time, the weft insertion stability is good, and the high air velocity and the minimum mass flow rate are obtained. On the basis of ensuring the weft insertion stability, the weft insertion speed can be increased without increasing the gas consumption. ②For the auxiliary nozzle with double round holes, the center distance between the two holes is 2.2 mm, and the cross section air velocity at 40 mm from the nozzle is higher than 90 m/s. The symmetry and the stability of weft insertion is good, which can meet the different requirements of actual weft insertion.③ For the auxiliary nozzles with rectangular shapes, when the length of the jet shapes is 2.034 mm and the width of the jet shapes is 0.885 mm, the air flow velocity at the section 40 mm from the jet shapes is higher than 90 m/s, with good symmetry and stability of weft insertion. The air flow speed is slightly improved, and the mass flow remains unchanged, which can increase the weft insertion speed without increasing the gas consumption on the basis of ensuring the stability of weft insertion.

Key words: air-jet loom, auxiliary nozzle, orifice, numericalsimulation, optimization analysis

中图分类号: 

  • TS112.3

图1

辅助喷嘴气流场三维计算模型"

图2

单圆孔辅助喷嘴喷孔结构示意图"

图3

单圆孔辅助喷嘴截面图"

图4

双圆孔辅助喷嘴喷孔结构示意图"

表1

双圆孔辅助喷嘴模拟数据"

组号 上方喷孔直径
d1/mm
下方喷孔直径
d2/mm
两孔中心距离
a/mm
A
B
C
D
E
1.2
1.3
1.4
1.5
1.6
1.1
1.0
0.9
0.8
0.7
1.9
2.0
2.1
2.2
2.3

图5

矩形孔辅助喷嘴喷孔结构示意图"

图6

单圆孔辅助喷嘴质量流量随锥度的变化"

图7

单圆孔辅助喷嘴最大气流速度随锥度的变化"

图8

不同锥度下距离单圆孔辅助喷嘴喷口40 mm处截面的气流速度分布"

图9

不同双圆孔辅助喷嘴的质量流量"

图10

不同双圆孔辅助喷嘴的最大气流速度"

图11

距离双圆孔辅助喷嘴喷口40 mm处截面的气流速度分布"

图12

不同矩形孔辅助喷嘴的质量流量"

图13

不同矩形孔辅助喷嘴的最大气流速度"

图14

距离矩形孔辅助喷嘴喷口40 mm处截面的气流速度分布"

[1] 张平国. 喷气织机引纬原理与工艺[M]. 北京: 中国纺织出版社, 2005: 101-108.
ZHANG Pingguo. Weft insertion principle and technology of air-jet loom[M]. Beijing: China Textile & Apparel Press, 2005: 101-108.
[2] BELFORTE G, MATTIAZZO G, TESTORE F, et al. Experimental investigation on air-jet loom sub-nozzles for weft yarn insertion[J]. Textile Research Journal, 2010, 81(8):86-93.
[3] 陈革, 吴重敏, 沈军, 等. 基于Fluent的辅助喷嘴气流流场数值模拟[J]. 纺织学报, 2010, 31(8):122-124.
CHEN Ge, WU Chongmin, SHEN Jun, et al. Numerical simulation of airflow field of auxiliary nozzle based on Fluent[J]. Journal of Textile Research, 2010, 31(8): 122-124.
[4] 汪旺. 喷气织机辅助喷嘴及合成气流场的数值仿真[D]. 杭州: 浙江理工大学, 2012:16-20.
WANG Wang. Numerical simulation of auxiliary nozzle and synthetic air flow field of air-jet loom[D]. Hangzhou: Zhejiang Sci-Tech University, 2012:16-20.
[5] 谭保辉, 冯志华, 刘丁丁, 等. 基于CFD的喷气织机辅助喷嘴流场分析[J]. 纺织学报, 2012, 33(7):123-128.
TAN Baohui, FENG Zhihua, LIU Dingding, et al. Flow field analysis of auxiliary nozzle of air jet loom based on CFD[J]. Journal of Textile Research, 2012, 33 (7): 123-128.
[6] 孔双祥, 胥光申, 巨孔亮. 基于Fluent喷气织机不同单孔辅助喷嘴的结构优化[J]. 西安工程大学学报, 2017(1):82-87.
KONG Shuangxiang, XU Guangshen, JU Kongliang. Structural optimization of different single hole auxiliary nozzles based on fluent air-jet loom[J]. Journal of Xi'an Polytechnic University, 2017 (1):82-87.
[7] 陈巧兰, 王鸿博, 高卫东, 等. 喷气织机单圆孔辅助喷嘴结构优化[J]. 纺织学报, 2016, 36(1):142-146.
CHEN Qiaolan, WANG Hongbo, GAO Weidong, et al. Structural optimization of single round hole auxiliary nozzle of air jet loom[J]. Journal of Textile Research, 2016, 36 (1): 142-146.
[8] 胥光申, 孔双祥, 刘洋, 等. 基于Fluent的喷气织机辅助喷嘴综合性能[J]. 纺织学报, 2018, 39(8):124-129.
XU Guangshen, KONG Shuangxiang, LIU Yang, et al. Comprehensive performance of auxiliary nozzle of air jet loom based on Fluent[J]. Journal of Textile Research, 2018, 39 (8): 124-129.
[9] ADANUR S, MOHAMED M H. Weft insertion on air-jet looms: velocity measurement and influence of yarn structure, part ii: effects of system parameters and yarn structure[J]. Biochimica Et Biophysica Acta, 1988, 79(2): 316-329.
[10] 林建忠, 阮晓东, 陈邦国, 等. 流体力学[M]. 北京: 清华大学出版社, 2005:54-63.
LIN Jianzhong, RUAN Xiaodong, CHEN Bangguo, et al. Fluid mechanics in mechanics[M]. Beijing: Tsinghua University Press, 2005:54-63.
[11] 李欣勤. 喷气织机辅助喷嘴对比分析[J]. 纺织机械, 1995, 22(1):1-8.
LI Xinqin. Comparative analysis of auxiliary nozzle of air jet loom[J]. Textile Machinery, 1995, 22 (1): 1-8.
[12] 刘丁丁. 喷气织机引纬流场的数值与实验研究及主喷嘴结构优化[D]. 苏州: 苏州大学, 2012:42-55.
LIU Dingding. Numerical and experimental study on weft insertion flow field of air-jet loom and structural optimization of main nozzle[D]. Suzhou: Soochow University, 2012:42-55.
[13] 郭杰. 喷气织机主喷嘴气流引纬三维数值模拟分析[D]. 苏州: 苏州大学, 2009:63-71.
GUO Jie. Three dimensional numerical simulation analysis of air weft insertion of main nozzle of air-jet loom[D]. Suzhou: Soochow University, 2009:63-71.
[14] GOKTEPE O, BOZKAN O. Study on reduction of air consumption on air-jet weaving machines[J]. Textile Research Journal, 2008, 78(9):816-824.
doi: 10.1177/0040517508090493
[1] 连力平, 杨鹏程, 余子健, 龙阳昭, 肖渊. 织物表面激光打标工艺参数的数值模拟及选取方法[J]. 纺织学报, 2023, 44(06): 121-128.
[2] 缪莹, 熊诗嫚, 郑敏博, 唐建东, 张慧霞, 丁彩玲, 夏治刚. 高光洁处理对聚酰亚胺短纤纱及其织物性能的影响[J]. 纺织学报, 2023, 44(02): 118-127.
[3] 孙戬, 姜博艺, 张守京, 胡胜. 异纤分拣机剔除喷管结构参数对其性能的影响[J]. 纺织学报, 2022, 43(10): 169-175.
[4] 诸文旎, 徐润楠, 胡蝶飞, 姚菊明, MILITKY Jiri, KREMENAKOVA Dana, 祝国成. 基于随机算法的纤维材料过滤特性仿真分析[J]. 纺织学报, 2022, 43(09): 76-81.
[5] 余玉坤, 孙玥, 侯珏, 刘正, 易洁伦. 单层服装间隙量的动态有限元模型构建与仿真[J]. 纺织学报, 2022, 43(04): 124-132.
[6] 刘宜胜, 周鑫磊, 刘丹丹. 气动折入边装置中纱线初始位置对折边效果的影响[J]. 纺织学报, 2022, 43(03): 168-175.
[7] 钱淼, 胡恒蝶, 向忠, 马成章, 胡旭东. 非均布热管换热器的流动及其传热性能[J]. 纺织学报, 2021, 42(12): 151-158.
[8] 周浩邦, 沈敏, 余联庆, 肖世超. 辅助喷嘴结构对喷气织机异形筘内合成流场特征的影响[J]. 纺织学报, 2021, 42(11): 166-172.
[9] 牟浩蕾, 解江, 裴惠, 冯振宇, 耿宏章. 芳纶织物及其包容环的弹道冲击与数值模拟[J]. 纺织学报, 2021, 42(11): 56-63.
[10] 王玉栋, 姬长春, 王新厚, 高晓平. 新型熔喷气流模头的设计与数值分析[J]. 纺织学报, 2021, 42(07): 95-100.
[11] 史倩倩, 王姜, 张玉泽, 林惠婷, 汪军. 转杯纺纱器气流场形成机制的数值分析[J]. 纺织学报, 2021, 42(02): 180-184.
[12] 初曦, 邱华. 不同压强条件下环锭旋流喷嘴内部流场模拟[J]. 纺织学报, 2020, 41(09): 33-38.
[13] 丁宁, 林洁. 非稳态自然对流换热系数计算方法及其在防护服隔热预报中的运用[J]. 纺织学报, 2020, 41(01): 139-144.
[14] 李斯湖, 沈敏, 白聪, 陈亮. 喷气织机辅助喷嘴结构参数对流场特性的影响[J]. 纺织学报, 2019, 40(11): 161-167.
[15] 陈旭, 吴炳洋, 范滢, 杨木生. 蓄热调温织物低温防护过程的数值模拟[J]. 纺织学报, 2019, 40(07): 163-168.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!