纺织学报 ›› 2023, Vol. 44 ›› Issue (01): 156-163.doi: 10.13475/j.fzxb.20210601908
WAN Ailan(), SHEN Xinyan, WANG Xiaoxiao, ZHAO Shuqiang
摘要:
为改善导电织物导电层与织物间的界面黏附性,构建有效接触的导电网络,提升传感响应特性,采用聚多巴胺(PDA)对涤纶/氨纶针织物表面进行修饰,制备以还原氧化石墨烯(RGO)和聚吡咯(PPy)为导电层的柔性传感器。借助傅里叶红外光谱仪、扫描电子显微镜、自制KTC传感测试盒、四探针方阻测试仪、万能拉伸试验机等对导电织物进行表征与分析。结果表明:经PDA修饰后的织物与RGO/PPy间的界面黏附性有明显改善,所构建导电网络更为连续,相较于未修饰的导电织物具有更好的耐久性和耐磨性;该织物柔性传感器的拉伸范围在0%~130%之间时,灵敏度增加至39.1,响应时间为0.06 s,可准确识别人体关节运动。
中图分类号:
[1] | 郭茹月, 鲍艳. 二维导电材料/柔性聚合物复合材料基可穿戴压阻式应变传感器的研究进展[J]. 精细化工, 2021, 38(4):649-661. |
GUO Ruyue, BAO Yan. Research progress on wearable piezoresistive strain sensors based on two-dimensional conductive materials/flexible polymer composites[J]. Fine Chemicals, 2021, 38 (4):649-661. | |
[2] |
LU Y, BISWAS M C, GUO Z, et al. Recent developments in bio-monitoring via advanced polymer nanocomposite-based wearable strain sensors[J]. Biosensors and Bioelectronics, 2019, 123: 167-177.
doi: S0956-5663(18)30636-5 pmid: 30174272 |
[3] |
LIU Q Q, ZHANG Y, LI A, et al. Reduced graphene oxide-coated carbonized cotton fabric wearable strain sensors with ultralow detection limit[J]. Journal of Materials Science: Materials in Electronics, 2020, 31(20): 17233-17248.
doi: 10.1007/s10854-020-04278-7 |
[4] |
WANG S, NING H, HU N, et al. Environmentally-friendly and multifunctional graphene-silk fabric strain sensor for human-motion detection[J]. Advanced Materials Interfaces, 2020. DOI:10.1002/admi.201901507.
doi: 10.1002/admi.201901507 |
[5] | 白玉峰, 何小芳, 康冬冬, 等. 石墨烯/聚吡咯复合材料制备及应用研究进展[J]. 化工新型材料, 2019, 47(5):5-9. |
BAI Yufeng, HE Xiaofang, KANG Dongdong, et al. Research progress in preparation and application of graphene/PPy composite[J]. New Chemical Materials, 2019, 47(5):5-9. | |
[6] |
BERENDJCHI A, KHAJAVI R, YOUSEFI A A, et al. Improved continuity of reduced graphene oxide on polyester fabric by use of polypyrrole to achieve a highly electro-conductive and flexible substrate[J]. Applied Surface Science, 2016, 363: 264-272.
doi: 10.1016/j.apsusc.2015.12.030 |
[7] |
CUI W, LI M, LIU J, et al. A strong integrated strength and toughness artificial nacre based on dopamine cross-linked graphene oxide[J]. ACS Nano, 2014, 8(9): 9511-9517.
doi: 10.1021/nn503755c pmid: 25106494 |
[8] |
NIU B, HUA T, HU H, et al. A highly durable textile-based sensor as a human-worn material interface for long-term multiple mechanical deformation sensing[J]. Journal of Materials Chemistry C, 2019, 7(46): 14651-14663.
doi: 10.1039/C9TC04006D |
[9] |
ZHAI J, CUI C, REN E, et al. Facile synthesis of nickel/reduced graphene oxide-coated glass fabric for highly efficient electromagnetic interference shielding[J]. Journal of Materials Science: Materials in Electronics, 2020, 31(11): 8910-8922.
doi: 10.1007/s10854-020-03426-3 |
[10] |
HU S, LEI Z, TU L, et al. Elastomeric conductive hybrid hydrogels with continuous conductive networks[J]. Journal of Materials Chemistry B, 2019, 7(15): 2389-2397.
doi: 10.1039/c9tb00173e pmid: 32255117 |
[11] | PAN J, YANG M, LUO L, et al. Stretchable and highly sensitive braided composite yarn@polydopamine@polypyrrole for wearable applications[J]. ACS Applied Materials & Interfaces, 2019, 11(7): 7338-7348. |
[12] | 常凤霞, 谭炯, 张熠佳. 聚多巴胺-还原氧化石墨烯修饰电极同时测定邻苯二酚和对苯二酚[J]. 分析科学学报, 2019, 35(6):841-846. |
CHANG Fengxia, TAN Jiong, ZHANG Yijia. Simultaneous determination of catechol and hydroquinone on polydopamine-reduced graphene oxide modified electrode[J]. Journal of Analytical Science, 2019, 35(6):841-846. | |
[13] |
FLOUDA P, SHAH S A, LAGOUDAS D C, et al. Highly multifunctional dopamine-functionalized reduced graphene oxide supercapacitors[J]. Matter, 2019, 1(6): 1532-1546.
doi: 10.1016/j.matt.2019.09.017 |
[14] |
XU J, WANG D, YUAN Y, et al. Polypyrrole/reduced graphene oxide coated fabric electrodes for supercapacitor application[J]. Organic Electronics, 2015, 24: 153-159.
doi: 10.1016/j.orgel.2015.05.037 |
[15] | 何青青, 徐红, 毛志平, 等. 高导电性聚吡咯涂层织物的制备[J]. 纺织学报, 2019, 40(10):113-119. |
HE Qingqing, XU Hong, MAO Zhiping, et al. Preparation of high-electrical conductivity polypyrrole-coated fabrics[J]. Journal of Textile Research, 2019, 40(10):113-119. | |
[16] |
ZHAO Y, MA J, CHEN K, et al. One-pot preparation of graphene-based polyaniline conductive nanocomposites for anticorrosion coatings[J]. Nano, 2017. DOI:10.1142/S1793292017500564.
doi: 10.1142/S1793292017500564 |
[17] |
SUN J, SHU X, TIAN Y, et al. Facile preparation of polypyrrole-reduced graphene oxide hybrid for enhancing NH3 sensing at room temperature[J]. Sensors and Actuators B: Chemical, 2017, 241: 658-664.
doi: 10.1016/j.snb.2016.10.047 |
[1] | 俞杨销, 李枫, 王煜煜, 王善龙, 王建南, 许建梅. 聚吡咯/丝素导电纳米纤维膜的制备及其性能[J]. 纺织学报, 2022, 43(10): 16-23. |
[2] | 杨宏林, 项伟, 董淑秀. 涤纶基纳米铜/还原氧化石墨烯复合材料的制备及其电磁屏蔽性能[J]. 纺织学报, 2022, 43(08): 107-112. |
[3] | 赵博宇, 李露红, 丛洪莲. 棉/Ti3C2导电纱制备及其电容式压力传感器的性能[J]. 纺织学报, 2022, 43(07): 47-54. |
[4] | 谢梦玉, 胡啸林, 李星, 瞿建刚. 还原氧化石墨烯/粘胶多层复合材料的制备及其界面蒸发性能[J]. 纺织学报, 2022, 43(04): 117-123. |
[5] | 陶旭晨, 李林, 徐珍珍. 杯芳烃/还原氧化石墨烯纤维的制备及其选择性吸附性能[J]. 纺织学报, 2022, 43(03): 64-70. |
[6] | 周筱雅, 马定海, 胡铖烨, 洪剑寒, 刘永坤, 韩潇, 闫涛. 涤纶/聚酰胺6纳米纤维包覆纱的连续制备及其应用[J]. 纺织学报, 2022, 43(02): 110-115. |
[7] | 邹梨花, 杨莉, 兰春桃, 阮芳涛, 徐珍珍. 层层组装氧化石墨烯/聚吡咯涂层棉织物的电磁屏蔽性能[J]. 纺织学报, 2021, 42(12): 111-118. |
[8] | 王曙东, 董青, 王可, 马倩. 还原氧化石墨烯增强聚乳酸纳米纤维膜的制备及其性能[J]. 纺织学报, 2021, 42(12): 28-33. |
[9] | 陈莹, 方浩霞. 疏水性导电聚吡咯整理棉织物的制备及其性能[J]. 纺织学报, 2021, 42(10): 115-119. |
[10] | 虞茹芳, 洪兴华, 祝成炎, 金子敏, 万军民. 还原氧化石墨烯涂层织物的电加热性能[J]. 纺织学报, 2021, 42(10): 126-131. |
[11] | 荣凯, 樊威, 王琪, 张聪, 于洋. 二维过渡金属碳/氮化合物复合纤维在智能可穿戴领域的应用进展[J]. 纺织学报, 2021, 42(09): 10-16. |
[12] | 朱小威, 韦天琛, 邢铁玲, 陈国强. 非晶光子晶体结构色织物的制备及其数值模拟[J]. 纺织学报, 2021, 42(09): 90-96. |
[13] | 王晓菲, 万爱兰, 沈新燕. 基于聚多巴胺修饰的聚吡咯导电织物制备与应变传感性能[J]. 纺织学报, 2021, 42(06): 114-119. |
[14] | 李一飞, 郑敏, 常朱宁子, 李丽艳, 曹元鸣, 翟旺宜. 二维过渡金属碳化物(Ti3C2Tx)对棉针织物的功能整理及其性能分析[J]. 纺织学报, 2021, 42(06): 120-127. |
[15] | 刘晓倩, 陈玉, 周惠敏, 闫源, 夏鑫. 等离子体接枝丙烯酸改性聚丙烯腈导电纳米纤维纱线的制备[J]. 纺织学报, 2021, 42(05): 109-114. |
|