纺织学报 ›› 2022, Vol. 43 ›› Issue (09): 156-166.doi: 10.13475/j.fzxb.20210603311

• 染整与化学品 • 上一篇    下一篇

零价铁/氧化石墨烯复合吸附剂对染料和重金属的吸附性能

王双双, 季志浩, 盛国栋, 金恩琪()   

  1. 绍兴文理学院 浙江省清洁染整技术研究重点实验室, 浙江 绍兴 312000
  • 收稿日期:2021-06-10 修回日期:2022-06-20 出版日期:2022-09-15 发布日期:2022-09-26
  • 通讯作者: 金恩琪
  • 作者简介:王双双(1996—),女,硕士生。主要研究方向为纺织印染废水处理技术。
  • 基金资助:
    国家自然科学基金面上项目(21777102);浙江省清洁染整技术研究重点实验室开放基金项目(QJRZ1902);浙江省公益技术研究计划项目(LGG21E030005);浙江省公益技术研究计划项目(LGG22E030002)

Dye and heavy metal adsorption performance of zero-valent iron/graphene oxide blend absorbent

WANG Shuangshuang, JI Zhihao, SHENG Guodong, JIN Enqi()   

  1. Key Laboratory of Clean Dyeing and Finishing Technology of Zhejiang Province, Shaoxing University, Shaoxing, Zhejiang 312000, China
  • Received:2021-06-10 Revised:2022-06-20 Published:2022-09-15 Online:2022-09-26
  • Contact: JIN Enqi

摘要:

针对目前酸性染料染色废水中染料和重金属Cr(Ⅵ)引起的严重环境污染问题,以零价铁(Fe0)/氧化石墨烯(GO)复合物作为吸附剂,以分别含有弱酸性蓝AS和Cr(Ⅵ)的水溶液模拟染色废水,探究Fe0与GO的质量比、溶液pH值及染料与Cr(Ⅵ)的初始质量浓度对吸附性能的影响,考察Fe0/GO吸附剂对酸性染料与Cr(Ⅵ)的吸附机制,研究其吸附热力学与动力学。结果表明:Fe0与GO吸附剂在质量比为4∶1时具有最佳吸附效果,弱酸性蓝AS染液初始质量浓度为75 mg/L,温度为30 ℃,pH值为4.0时,12 h后去除率为85.6%,最大吸附量达到85.6 mg/g;Cr(Ⅵ)溶液初始质量浓度为75 mg/L,温度为30 ℃,pH值为3.0时,12 h后去除率为95.8%,最大吸附量达到95.8 mg/g;Fe0/GO对2种污染物的吸附过程均符合Langmuir模型和准二级动力学模型。

关键词: 氧化石墨烯, 零价铁, 吸附性能, 六价铬离子, 酸性染料, 印染废水

Abstract:

In order to combat the serious pollution caused by dyes and heavy metal Cr(Ⅵ) in acid dye, zero-valent iron (Fe0)/graphene oxide (GO) compound was used as an adsorbent. The aqueous solutions containing Weak Acid Blue AS dye and heavy metal Cr(Ⅵ), respectively, were employed to simulate dye wastewater. The effects of the mass ratio of Fe0 and GO, the pH value of solution, and the initial mass concentration of dye and Cr(Ⅵ) on the adsorption performance were analyzed. The adsorption mechanism of Fe0/GO blend adsorbent for acid dye and Cr(Ⅵ) was investigated, and the adsorption thermodynamics and kinetics were studied. The results show that Fe0/GO blend adsorbent has the best adsorption capacity when the weight ratio is 4∶1. When the initial concentration of dye wastewater is 75 mg/L at 30 ℃ and pH is 4.0, the removal percentage is 85.6% after 12 h, and the maximum adsorption capacity reaches 85.6 mg/g. When the initial concentration of Cr(Ⅵ) is 75 mg/L at 30 ℃ and pH is 3.0, the removal percentage reaches 95.8% after 12 h, and the maximum adsorption capacity reaches 95.8 mg/g. The adsorption processes to both acid dye and Cr(Ⅵ) were both in accordance with the Langmuir model and the pseudo-second-order kinetic model.

Key words: graphene oxide, zero-valent iron, adsorption performance, Cr(VI), acid dye, dye wastewater

中图分类号: 

  • TS199

图1

弱酸性蓝AS溶液质量浓度与吸光度关系拟合曲线"

图2

Cr(Ⅵ)络合物溶液质量浓度与吸光度关系拟合曲线"

表1

不同Fe0与GO质量比对酸性染料和Cr(Ⅵ)的吸附能力"

m(Fe0)∶m(GO) 弱酸性蓝AS去除率/% Cr(Ⅵ)去除率/%
8∶1 76.9 9.8
4∶1 87.4 23.5
1∶1 84.7 18.8
1∶4 84.1 10.6
1∶2 77.9 7.3
纯Fe0 61.7 5.4
纯GO 43.9 2.9

图3

pH值对吸附性能的影响"

图4

Fe0/GO在不同pH值溶液中的Zeta电位"

图5

弱酸性蓝AS初始质量浓度对吸附性能的影响"

图6

Cr(Ⅵ) 初始质量浓度对吸附性能的影响"

表2

常用吸附剂对弱酸性蓝AS的吸附能力"

吸附剂名称 qm/
(mg·g-1)
吸附条件 参考文献
pH值 温度/K
阴离子交换纤维 8.3 2.0 353 [21]
硅藻土 17.2 5.0 298 [22]
壳聚糖插层蒙脱土 18.8 5.0 293 [23]
活性碳纤维 76.5 8.0 283 [24]
Fe0/GO 85.6 4.0 303 本文

表3

常用吸附剂对Cr(Ⅵ)的吸附能力"

吸附剂名称 qm/
(mg·g-1)
吸附条件 参考文献
pH值 温度/K
水化氯铝酸钙 3.5 6.0 298 [25]
磁性水葫芦生物炭 18.5 2.0 298 [26]
γ-Al2O3固载水滑石 49.2 3.0 298 [27]
铁铝水滑石 51.3 6.0 298 [28]
Fe0/GO 95.8 4.0 303 本文

图7

优化吸附条件下Fe0/GO对弱酸性蓝AS和Cr(Ⅵ)混合污染物的吸附性能"

图8

再生循环使用后Fe0/GO的吸附性能"

图9

Fe0、GO以及吸附弱酸性蓝AS、Cr(Ⅵ)前后的Fe0/GO的SEM照片"

图10

弱酸性蓝AS以及吸附弱酸性蓝AS前后的Fe0/GO的拉曼光谱图 a—吸附前的Fe0/GO;b—吸附弱酸性蓝AS后的Fe0/GO;c—弱酸性蓝AS。"

图11

吸附Cr(Ⅵ)前后的Fe0/GO与K2Cr2O7的拉曼光谱图 a—吸附前的Fe0/GO;b—吸附Cr(Ⅵ)后的Fe0/GO;c—K2Cr2O7。"

图12

弱酸性蓝AS与吸附弱酸性蓝前后的 Fe0/GO的红外光谱图 a—弱酸性蓝AS;b—吸附前的Fe0/GO;c—吸附弱酸性蓝后的Fe0/GO。"

图13

吸附Cr(Ⅵ)前后的Fe0/GO与K2Cr2O7的红外光谱图 a—K2Cr2O7;b—吸附Cr(Ⅵ)前的Fe0/GO;c—吸附Cr(Ⅵ)后的Fe0/GO。"

图14

Fe0/GO在吸附Cr(Ⅵ)后的XPS谱图"

图15

采用Langmuir和Freundlich模型拟合的Fe0/GO对弱酸性蓝AS的吸附等温线"

图16

采用Langmuir和Freundlich模型拟合的Fe0/GO对Cr(Ⅵ)的吸附等温线"

表4

Fe0/GO对弱酸性蓝AS和Cr(Ⅵ)的吸附等温线参数"

污染物
名称
Langmuir模型参数 Freundlich模型参数
b/
(L·mg-1)
qmax /
(mg·g-1)
R2 KF/
(mg1-n·Ln)
n R2
弱酸性
蓝AS
0.682 7 4.66 0.957 4 5.686 0.460 1 0.886 3
Cr (Ⅵ) 0.011 7 178.57 0.994 8 14.150 0.416 2 0.992 1

图17

Fe0/GO对弱酸性蓝AS的准一级和准二级吸附动力学拟合曲线"

图18

Fe0/GO对Cr(Ⅵ)的准一级和准二级吸附动力学拟合曲线"

表5

Fe0/GO对弱酸性蓝AS和Cr(Ⅵ)的吸附动力学参数"

污染物
名称
准一级动力学参数 准二级动力学参数
k1×103 qe/
(mg·g-1)
R2 k2×105 qe/
(mg·g-1)
R2
弱酸性蓝AS 5.40 48.85 0.940 6 19.57 71.43 0.995 4
Cr (Ⅵ) 7.10 63.44 0.876 4 6.60 68.97 0.931 2
[1] 卢莱雅, 秦嘉玲, 杨圩. 关于印染废水处理方法的综述[J]. 山东化工, 2020, 49(15):67-68.
LU Laiya, QIN Jialing, YANG Wei. A review on the method for textile wastewater[J]. Shandong Chemical Industry, 2020, 49(15):67-68.
[2] 罗忻, 修晓丽, 牛增元. 纺织品中致癌致敏染料检测的研究进展及存在问题[J]. 纺织学报, 2013, 34(7): 154-164.
LUO Xin, XIU Xiaoli, NIU Zengyuan. Research progress and existing problems on determination of carcinogenic and allergenic dyes in textiles[J]. Journal of Textile Research, 2013, 34(7): 154-164.
[3] 吴刚, 王力君, 张明誉, 等. 涤纶中致癌芳香胺的加速溶剂萃取-UPLC-MS/MS快速测定[J]. 纺织学报, 2014, 35(7): 94-100.
WU Gang, WANG Lijun, ZHANG Mingyu, et al. Determination of aromatic amines in terylene by ASE coupled with UPLC-MS/MS[J]. Journal of Textile Research, 2014, 35(7): 94-100.
[4] 管斌斌, 李庆, 陈灵辉, 等. 快速测定基于锆-有机骨架的印染废水中Cr(Ⅵ)的荧光检测[J]. 纺织学报, 2021, 42(2): 122-128.
GUAN Binbin, LI Qing, CHEN Linghui, et al. Fluorescence detection of Cr(Ⅵ) from printing and dyeing wastewater by zirconium-organic framework[J]. Journal of Textile Research, 2021, 42(2): 122-128.
doi: 10.1177/004051757204200209
[5] 邓一民, 代方银, 易世雄, 等. 蚕茧对六价铬的吸附性能[J]. 纺织学报, 2015, 36(4): 82-86.
DENG Yimin, DAI Fangyin, YI Shixiong, et al. Adsorption capacity of cocoon to Cr(Ⅵ)[J]. Journal of Textile Research, 2015, 36(4): 82-86.
[6] LIU T T, WANG Z, WANG X R, et al. Adsorption-photocatalysis performance of polyaniline/dicarboxyl acid cellulose@graphene oxide for dye removal[J]. International Journal of Biological Macromolecules, 2021, 182: 492-501.
doi: 10.1016/j.ijbiomac.2021.04.038
[7] EBRAHIMPOOR S, KIAROSTAMI V, KHOSRAVI M, et al. Optimization of tartrazine adsorption onto polypyrrole/SrFe12O19/graphene oxide nanocomposite using central composite design and bat inspired algorithm with the aid of artificial neural networks[J]. Fibers and Polymers, 2021, 22: 159-170.
doi: 10.1007/s12221-021-8163-9
[8] SIRAJUDHEEN P, KARTHIKEYAN P, VIGNESHWARAN S, et al. Complex interior and surface modified alginate reinforced reduced graphene oxide-hydroxyapatite hybrids: removal of toxic azo dyes from the aqueous solution[J]. International Journal of Biological Macromolecules, 2021, 175: 361-371.
doi: 10.1016/j.ijbiomac.2021.02.024
[9] XU H, TIAN L, ZHANG Y J, et al. Simultaneous removal of Cr(Ⅵ) and Orange G6 by polyaniline/attapulgite supported nano zero-valent iron activate persulfate[J]. Desalination and Water Treatment, 2021, 209: 353-366.
doi: 10.5004/dwt.2021.26518
[10] KANG H B, GU J H, LIU G, et al. Performance and mechanism of layered double hydroxide to remove graphene oxide in aqueous solution[J]. Nature Environment and Pollution Technology, 2021, 20: 55-62.
doi: 10.46488/NEPT.2021.v20i01.006
[11] HOSSAIN M I, SOLIMAN M M, El-NAGGAR M E, et al. Synthesis and characterization of graphene oxide-ammonium ferric sulfate composite for the removal of dyes from tannery wastewater[J]. Journal of Materials Research and Technology, 2021, 12: 1715-1727.
doi: 10.1016/j.jmrt.2021.03.097
[12] ZHAO Y G, ZHU Y, ZHANG Y, et al. Ultrasound-assisted synthesis of tetraethylenepentamine-modified graphene oxide/dispersive Fe3O4 composites with enhanced adsorption capacity for allergenic disperse dyes[J]. Journal of the Iranian Chemical Society, 2021, 18: 1113-1125.
doi: 10.1007/s13738-020-02099-3
[13] 刘扬, 安立宝, 龚亮. Fe掺杂石墨烯表面吸附Au: 第一性原理[J]. 南京工业大学学报(自然科学版), 2018, 40(3): 109-114.
LIU Yang, AN Libao, GONG Liang. Adsorption of Au on Fe-doped grapheme: the first principles[J]. Journal of Nanjing University of Technology (Natural Science Edition), 2018, 40(3): 109-114.
[14] LI S S, YANG F, ZHANG Y Y, et al. Performance of lead ion removal by the three-dimensional carbon foam supported nanoscale zero-valent iron composite[J]. Journal of Cleaner Production, 2021. DOI: 10.1016/j.jelepro.2020.125350.
doi: 10.1016/j.jelepro.2020.125350
[15] LI Z, JONES H K, BOWMAN R S, et al. Enhanced reduction of chromate and PCE by pelletized surfactant-modified zeolite/zerovalent iron[J]. Environmental Science & Technology, 1999, 33: 4326-4330.
doi: 10.1021/es990334s
[16] WENG C H, LIN Y T, LIN T Y, et al. Enhancement of electrokinetic remediation of hyper-Cr(Ⅵ) contaminated clay by zero-valent iron[J]. Journal of Hazardous Materials, 2007, 149: 292-302.
doi: 10.1016/j.jhazmat.2007.03.076
[17] 王彦娜, 夏爱清, 梁慧锋, 等. 磁性氧化石墨烯/聚苯胺纳米复合材料的制备及再生循环吸附性研究[J]. 化学研究与应用, 2020, 32(7): 1296-1301.
WANG Yanna, XIA Aiqing, LIANG Huifeng, et al. Synthesis and cyclic absorption properties of magnetic graphene oxide/polyaniline nanocomposite[J]. Chemical Research and Application, 2020, 32(7): 1296-1301.
[18] 李秀玲, 柳亚清, 曹晶潇, 等. 活性炭纤维对废水中Cr(Ⅵ)的吸附性能及再生试验研究[J]. 湿法冶金, 2020, 39(4): 335-340.
LI Xiuling, LIU Yaqing, CAO Jingxiao, et al. Adsorption and regeneration of activated carbon fiber for Cr(Ⅵ) in wastewater[J]. Hydrometallurgy of China, 2020, 39(4): 335-340.
[19] LI P, ZHENG T L, WANG Q H, et al. Treatment of real high-concentration dyeing wastewater using a coagulation-hydrolysis acidification-multilevel contact oxidation system[J]. Environmental Progress & Sustainable Energy, 2015, 34: 339-345.
[20] 薛志成. 节能环保的电解法处理染色废水[J]. 陕西纺织, 2009(2): F3.
XUE Zhicheng. Treatment of dyeing wastewater by electrolysis with energy saving and environmental protection[J]. Shaanxi Textile, 2009(2): F3.
[21] 赵燕, 付丽红, 张业聪. 阴离子交换纤维对酸性染料吸附性能的研究[J]. 中国皮革, 2009, 38(17): 19-22.
ZHAO Yan, FU Lihong, ZHANG Yecong. Adsorption properties of anion exchange fiber for acid dye[J]. China Leather, 2009, 38(17): 19-22.
[22] 矫娜, 王东升, 段晋明, 等. 改性硅藻土对三种有机染料的吸附作用研究[J]. 环境科学学报, 2012, 32(6): 1364-1369.
JIAO Na, WANG Dongsheng, DUAN Jinming, et al. Adsorption of three organic dyes on modified diatomite[J]. Journal of Environmental Sciences, 2012, 32(6): 1364-1369.
[23] 马娟娟, 卓宁泽, 陆嘉伟, 等. 壳聚糖插层蒙脱土复合材料吸附酸性染料的动力学和热力学研究[J]. 离子交换与吸附, 2011, 27(2): 129-136.
MA Juanjuan, ZHUO Ningze, LU Jiawei, et al. Kinetic and thermodynamic studies on the adsorption of acid dyes with chitosan-montmorillonite hybrid materials[J]. Ion Exchange and Adsorption, 2011, 27(2): 129-136.
[24] 龚正君, 周文波, 陈钰. 活性炭纤维对水中酸性染料的吸附研究[J]. 工业水处理, 2012, 32(9): 24-28.
GONG Zhengjun, ZHOU Wenbo, CHEN Yu. Study on the adsorption of acidic dyes in water with activated carbon fiber[J]. Industrial Water Treatment, 2012, 32(9): 24-28.
[25] 韩晓刚, 顾一飞, 闵建军, 等. 聚氯化铝残渣制备水化氯铝酸钙及其对六价铬的吸附[J]. 电镀与涂饰, 2021, 40(4): 308-312.
HAN Xiaogang, GU Yifei, MIN Jianjun, et al. Preparation of hydrated calcium chloroaluminate from polyaluminum chloride residue and its adsorbility to Cr(Ⅵ)[J]. Electroplating and Finishing, 2021, 40(4): 308-312.
[26] 张康, 吴小清, 张华, 等. 磁性水葫芦生物炭对废水中六价铬的吸附性能[J]. 桂林理工大学学报, 2020, 40(1): 193-200.
ZHANG Kang, WU Xiaoqing, ZHANG Hua, et al. Adsorption performance of magnetic biochar derived from water hyacinth to hexavalent chromium in wastewater[J]. Journal of Guilin University of Technology, 2020, 40(1): 193-200.
[27] 孙洪刚, 李士凤. γ-Al2O3固载水滑石的制备及其动态吸附Cr(Ⅵ)的性能研究[J]. 当代化工, 2020, 49(7): 1384-1387.
SUN Honggang, LI Shifeng. Preparation of γ-Al2O3 supported hydrotalcite and its dynamic adsorption for Cr(Ⅵ)[J]. Contemporary Chemical Industry, 2020, 49(7): 1384-1387.
[28] 王鹏瑞, 杨丹, 张雪, 等. 钙铝和铁铝水滑石的制备及其吸附水中六价铬的性能[J]. 中国粉体技术, 2021, 27(3): 59-67.
WANG Pengrui, YANG Dan, ZHANG Xue, et al. Preparation of CaAl-and FeAl-layered double hydroxides and adsorptive removal Cr(Ⅵ) in aqueous solutions[J]. China Powder Science and Technology, 2021, 27(3): 59-67.
[29] LI M L, JI Z H, SHENG G D, et al. Scavenging mechanism of rare earth metal ions in water by graphene oxide[J]. Journal of Molecular Liquids, 2021. DOI: 10.1016/j.molliq.2020.114940.
doi: 10.1016/j.molliq.2020.114940
[30] 潘铁英, 张玉兰, 苏克曼. 波谱解析法[M]. 2版. 上海: 华东理工大学出版社, 2009:158-159.
PAN Tieying, ZHANG Yulan, SU Keman. Spectral analysis method[M]. 2nd ed. Shanghai: East China University of Science and Technology Press, 2009:158-159.
[31] 魏君怡, 李勇, 薛向欣. 基于离子液体的“可设计性”和“软酸”性质萃取分离电镀污泥中Cr6+/Fe3+[J]. 化工学报, 2017(9):138-145.
WEI Junyi, LI Yong, XUE Xiangxin. Cr6+/Fe3+ extraction separation from electroplating sludge based on designability and soft acidity of ionic liquids[J]. CIESC Journal, 2017(9):138-145.
[32] 王献伟, 王芳芳. 重铬酸钾在银胶中的表面增强Raman散射研究[J]. 中国科技信息, 2005, 13:14.
WANG Xianwei, WANG Fangfang. Study on surface enhanced Raman scattering of potassium dichromate in silver colloid[J]. China Science and Technology Information, 2005, 13:14.
[33] RUBINSON K A, RUBINSON J F. Contemporary instrumental analysis[M]. Beijing: Science Press, 2003:467-469.
[34] 葛战勤, 杨永会. 伯胺N1923萃取铬(Ⅵ)的研究[J]. 应用化学, 1995, 12(3):57-60.
GE Zhanqin, YANG Yonghui. Study on the extraction of chromium(Ⅵ) by primary amine N1923[J]. Chinese Journal of Applied Chemistry, 1995, 12(3):57-60.
[35] WU H, LI L, CHANG K K, et al. Graphene oxide decorated nanoscale iron sulfide for highly efficient scavenging of hexavalent chromium from aqueous solutions[J]. Journal of Environmental Chemical Engineering, 2020. DOI: 10.1016/j.jece.2020.103882.
doi: 10.1016/j.jece.2020.103882
[36] CHEN J J, WU H, XU L X, et al. New insights into colloidal GO, Cr(Ⅵ) and Fe(Ⅱ) interaction by a combined batch, spectroscopic and DFT calculation investigation[J]. Journal of Molecular Liquids, 2021. DOI: 10.1016/j.molliq.2021.116365.
doi: 10.1016/j.molliq.2021.116365
[1] 杨丽, 王涛, 石现兵, 韩振邦. 改性聚丙烯腈纤维负载MoSx/TiO2光催化材料制备及其降解染料性能[J]. 纺织学报, 2022, 43(09): 149-155.
[2] 杨宏林, 项伟, 董淑秀. 涤纶基纳米铜/还原氧化石墨烯复合材料的制备及其电磁屏蔽性能[J]. 纺织学报, 2022, 43(08): 107-112.
[3] 王静, 娄娅娅, 王春梅. 铁基金属–有机框架材料/活性碳纤维复合材料的制备及其对染料的脱色[J]. 纺织学报, 2022, 43(08): 126-131.
[4] 张雅宁, 张辉, 宋悦悦, 李文明, 李雯君, 姚佳乐. 废弃口罩基ZIF-8/Ag/TiO2复合材料的制备及其光催化降解染料性能[J]. 纺织学报, 2022, 43(07): 111-120.
[5] 高陆玺, 吕雪川, 张弛, 宋翰林, 高肖汉. 用于印染废水处理的改性絮凝剂合成及其脱色性能[J]. 纺织学报, 2022, 43(07): 121-128.
[6] 王茜, 乔燕莎, 王君硕, 李彦, 王璐. 金属酚醛/两性离子聚合物涂层聚丙烯补片的制备及其抗蛋白吸附性能[J]. 纺织学报, 2022, 43(06): 9-14.
[7] 谢梦玉, 胡啸林, 李星, 瞿建刚. 还原氧化石墨烯/粘胶多层复合材料的制备及其界面蒸发性能[J]. 纺织学报, 2022, 43(04): 117-123.
[8] 金旭, 刘方, 杜嬛, 华超, 公旭中, 张秀芹, 汪滨. 纳米纤维负载型纳米零价铁基材料在环境修复中的应用研究进展[J]. 纺织学报, 2022, 43(03): 201-209.
[9] 陶旭晨, 李林, 徐珍珍. 杯芳烃/还原氧化石墨烯纤维的制备及其选择性吸附性能[J]. 纺织学报, 2022, 43(03): 64-70.
[10] 魏娜娜, 刘碟, 马政, 焦晨璐. 纤维素/壳聚糖磁性气凝胶的冻融法制备及其对染料吸附性能[J]. 纺织学报, 2022, 43(02): 53-60.
[11] 刘汉邦, 李新荣, 冯文倩, 吴柳波, 袁汝旺. 面向服装面料的柯恩达效应式非接触夹持器吸附性能[J]. 纺织学报, 2022, 43(02): 208-213.
[12] 邹梨花, 杨莉, 兰春桃, 阮芳涛, 徐珍珍. 层层组装氧化石墨烯/聚吡咯涂层棉织物的电磁屏蔽性能[J]. 纺织学报, 2021, 42(12): 111-118.
[13] 施敏慧, 李冰蕊, 王挺, 吴礼光. 高含盐废水中TiO2复合光催化剂光降解甲基橙机制及性能[J]. 纺织学报, 2021, 42(12): 103-110.
[14] 王曙东, 董青, 王可, 马倩. 还原氧化石墨烯增强聚乳酸纳米纤维膜的制备及其性能[J]. 纺织学报, 2021, 42(12): 28-33.
[15] 虞茹芳, 洪兴华, 祝成炎, 金子敏, 万军民. 还原氧化石墨烯涂层织物的电加热性能[J]. 纺织学报, 2021, 42(10): 126-131.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!