纺织学报 ›› 2022, Vol. 43 ›› Issue (12): 29-34.doi: 10.13475/j.fzxb.20210604006

• 纤维材料 • 上一篇    下一篇

水驻极聚丙烯熔喷非织造材料的制备及其带电特性分析

吴燕金, 王江, 王洪()   

  1. 东华大学 纺织面料技术教育部重点实验室, 上海 201620
  • 收稿日期:2021-06-16 修回日期:2022-09-22 出版日期:2022-12-15 发布日期:2023-01-06
  • 通讯作者: 王洪
  • 作者简介:吴燕金(1997—),女,硕士。主要研究方向为水驻极熔喷非织造材料及驻极机制。

Preparation and charging characteristics analysis of hydro charging polypropylene melt-blown nonwovens

WU Yanjin, WANG Jiang, WANG Hong()   

  1. Key Laboratory of Textile Science & Technology, Ministry of Education, Donghua University, Shanghai 201620, China
  • Received:2021-06-16 Revised:2022-09-22 Published:2022-12-15 Online:2023-01-06
  • Contact: WANG Hong

摘要:

为深入探究水驻极熔喷非织造材料的带电特性,制备了水驻极聚丙烯熔喷非织造材料,研究了水质电导率与烘燥温度对材料过滤性能的影响,利用原子力显微镜、静电电位测试仪分析了水驻极熔喷非织造材料带电特性,并探究了水驻极对电晕充电熔喷非织造材料带电和过滤性能的影响。结果表明:水质的电导率越小,所得熔喷非织造材料的过滤效率越高,而烘燥温度对材料基本性能和过滤性能无明显影响。水驻极使熔喷非织造材料同时带有正电荷和负电荷,其表面静电势是各层纤网静电势叠加的结果。推测认为,呈正电、负电或者中性的雾状水射流与纤维摩擦过程发生电子转移和离子转移,从而使材料驻极带电。

关键词: 水驻极, 熔喷非织造材料, 过滤性能, 聚丙烯, 带电特性

Abstract:

In order to study the charged characteristics of water electret melt-blown nonwovens, the hydro charging polypropylene melt-blown nonwoven material was prepared. The influence of water conductivity and drying temperature on the filtration performance of samples was investigated. Atomic force microscope, electrostatic potential tester and thermal stimulation discharge instrument were used to analyze the charging characteristics of the hydro charging melt-blown nonwovens. The synergistic effect of corona discharge and hydro charging was studied as well. The results show that the smaller the conductivity of the water used for the hydro charging, the higher the filtration efficiency of the obtained sample. The drying temperature did not affect the physical and filtration performance of obtained samples. After hydro charging, the potential charge of the melt-blown nonwovens increased significantly with random positive and negative distribution. The surface electrostatic potential is the result of overlapping of the electrostatic potential of each layer of the web. It is speculated that electron transfer and ion transfer occur due to frictions between the positive, negative or neutral water droplets and the fiber, resulting in the high static potential of melt-blown nonwovens.

Key words: hydro charging, melt-blown nonwovens, filter performance, polypropylene, charging characteristic

中图分类号: 

  • TS174.8

图1

驻极工艺示意图"

表1

利用不同水质制备的熔喷非织造材料的过滤效率"

试样名称 电导率/
(μS·cm-1)
过滤效
率/%
纯水 1.3 93.5
去离子水 15.1 87.7
Na2CO3 166.0 78.8
自来水 433.6 60.1

表2

不同烘燥条件所得样品的物理性能"

试样烘燥条件 面密度/(g·m-2) 厚度/mm 透气率/(mm·s-1)
原始 41.9 0.37 259.1
晾干 42.3 0.37 243.4
110 ℃ 42.1 0.37 242.9
130 ℃ 42.1 0.38 253.6
150 ℃ 42.1 0.37 250.2

表3

干燥条件对水驻极熔喷非织造材料过滤性能的影响"

干燥温度/℃ 过滤阻力/Pa 过滤效率/%
25 127.4 97.8
110 126.4 96.6
130 123.2 95.8
150 124.5 97.4

图2

单根纤维表面电势分布图"

图3

水驻极熔喷非织造材料表面电势分布"

图4

水驻极熔喷非织造材料分层电势分布图"

表4

不同驻极条件所得样品的过滤效率"

序号 驻极工艺 过滤效率 CV值
1 水驻极 96.0 1.5
2 电晕充电 92.2 1.4
3 水驻极+水驻极 96.3 0.3
4 电晕充电+水驻极 68.9 11.9

图5

电晕充电熔喷非织造材料表面电势分布图"

图6

水驻极后的电晕充电熔喷非织造材料表面电势分布图"

图7

水驻极机制示意图"

[1] 沈恒根, 杨磊, 刘刚, 等. 新型医用防护口罩过滤环境气溶胶的性能[J]. 第二军医大学学报, 2003(6): 629-631.
SHEN Henggen, YANG Lei, LIU Gang, et al. Performance of a new mask material in filtering ambient aerosols for medical staff[J]. Academic Journal of Second Military Medical University, 2003(6):629-631.
[2] 温占波, 鹿建春, 李劲松, 等. 口罩滤材对非生物颗粒气溶胶和微生物气溶胶过滤效率的评价[J]. 中国消毒学杂志, 2009, 26(5):487-490.
WEN Zhanbo, LU Jianchun, LI Jinsong, et al. Evaluation on the filtration efficiency of the mask filtration materials against non-biological particles and microbial aerosol[J]. Chinese Journal of Disinfection, 2009, 26(5):487-490.
[3] 侯冠一, 武文杰, 万海肖, 等. 口罩聚丙烯熔喷布的静电机制及其影响因素的研究进展[J]. 高分子通报, 2020(8):1-22.
HOU Guanyi, WU Wenjie, WAN Haixiao, et al. Research progress of static-electricity mechanism and influencing factors of polypropylene melt-blown nonwovens in mask[J]. Chinese Polymer Bulletin, 2020(8):1-22.
[4] 陈曦. 熔喷聚丙烯驻极体空气净化材料应用过程中几个关键问题研究[D]. 杭州: 杭州电子科技大学, 2018:1-7.
CHEN Xi. Research on several key problems aboutmelt-blown polypropylene electret airpurification materials in the process ofapplication[D]. Hangzhou: Hangzhou Dianzi University, 2018:1-7.
[5] ANGADJIVAND S A, JONES M E, MEYER D E. Method of charging electret filter media: US 5496507[P]. 1996-03-05.
[6] ANGADJIVAND S A, SCHWARTZ M G, EITZMAN P D, et al. Method and apparatus for making nonwoven fibrous electret web from free-fiber and polar liquid: US 6375886 B1[P]. 2002-04-23.
[7] HORIGUCHI H, TAKEDA M. Method and device for manufacturing electret processed product: EP 1403418[P]. 2009-03-11.
[8] ANGADJIVAND S A, BRANDNER J M, SPRINGETT J E. Meltblown fiber web with staple fibers: US 2008/0318024 A1[P]. 2010-03-31.
[9] IM K B, HONG Y K. Development of a Melt-blown nonwoven filter for medical masks by hydro charging[J]. Textile Science and Engineering, 2014, 51(4):186-192.
doi: 10.12772/TSE.2014.51.186
[10] 姬苏倩, 朱政辉, 张菁. 不同驻极方式下聚丙烯熔喷非织造布的过滤性能[J]. 合成纤维, 2021, 50(3):35-38.
JI Suqian, ZHU Zhenghui, ZHANG Jing. Research on filtration performance of polypropylene meltblown nonwovens under different electret modes[J]. Synthetic Fiber in China, 2021, 50(3):35-38.
[11] 余翔. 新型电导率和pH水质参数检测技术与实验研究[D]. 杭州: 浙江大学, 2015:2-12.
YU Xiang. The detection technology and experimental research of a new type of electrical conductivity and pH of water quality parameters[D]. Hangzhou: Zhejiang University, 2015:2-12.
[12] KUDIN K N, ROBERTO C. Why are water-hydrophobic interfaces charged?[J]. Journal of The American Chemical Society, 2008, 130(12):3915-3919.
doi: 10.1021/ja077205t pmid: 18311970
[13] 纪思宇. 空气过滤用透明改性驻极无纺布的开发[D]. 天津: 天津工业大学, 2016:8-10.
JI Siyu. Development of transparent modified electret non-woven fabric for air filtration[D]. Tianjin:Tiangong University, 2016:8-10.
[14] LIU B, ZHANG S, WANG X, et al. Efficient and reusable polyamide-56 nanofiber/nets membrane with bimodal structures for air filtration[J]. Journal of Colloid and Interface Science, 2015, 457: 203-211.
doi: 10.1016/j.jcis.2015.07.019 pmid: 26188726
[15] KILIC A, RUSSELL S, SHIM E, et al. Fibrous filter media[M]. Cambridge: Woodhead Publishing, 2017: 95-121.
[16] CHUNG H D, SHIN G. Water behavior based electric generation via charge separation[J]. Nano Energy, 2020, 82:1-7.
[17] LIN S, XU L, CHI WANG A, et al. Quantifying electron-transfer in liquid-solid contact electrification and the formation of electric double-layer[J]. Nature Communications, 2020, 11(1): 399.
doi: 10.1038/s41467-019-14278-9 pmid: 31964882
[18] 苑亚鹏. 液滴式界面电荷检测技术研究[D]. 大连: 大连海事大学, 2018:3-13.
YUAN Yapeng, Detection of the interface charge of a pedant droplet[D]. Dalian: Dalian Maritime University, 2018:3-13.
[1] 张天芸, 石小红, 张乐, 王富娟, 谢依娜, 杨亮, 冉奋. 基于离子液体协同法的双交联结构细菌纤维素/聚丙烯酰胺凝胶聚合物电解质构建[J]. 纺织学报, 2022, 43(11): 22-28.
[2] 姚莹, 赵为陶, 张德锁, 林红, 陈宇岳, 魏红. 超支化季铵盐诱导制备树枝状纳米纤维膜及其性能[J]. 纺织学报, 2022, 43(10): 1-9.
[3] 杨丽, 王涛, 石现兵, 韩振邦. 改性聚丙烯腈纤维负载MoSx/TiO2光催化材料制备及其降解染料性能[J]. 纺织学报, 2022, 43(09): 149-155.
[4] 梁姣姣, 汪菁晶, 夏于旻, 朱新远, 闫冰, 孙利明, 王燕萍, 何勇, 王依民. 基于聚离子液体的常压阴离子可染聚丙烯纤维制备及其性能[J]. 纺织学报, 2022, 43(07): 17-21.
[5] 王茜, 乔燕莎, 王君硕, 李彦, 王璐. 金属酚醛/两性离子聚合物涂层聚丙烯补片的制备及其抗蛋白吸附性能[J]. 纺织学报, 2022, 43(06): 9-14.
[6] 陈锋, 姬忠礼, 于文瀚, 董伍强, 王倩琳, 王德国. 纳米纤维膜润湿性对三明治结构复合过滤材料气液过滤性能的影响[J]. 纺织学报, 2022, 43(05): 63-69.
[7] 邓杨, 石现兵, 王涛, 刘利伟, 韩振邦. 负载MIL-53(Fe)的改性聚丙烯腈纤维光催化剂的制备及其性能[J]. 纺织学报, 2022, 43(03): 58-63.
[8] 赵家明, 孙辉, 于斌, 杨潇东. CuO/聚丙烯/乙烯-辛烯共聚物复合熔喷非织造材料的制备及其吸油性能[J]. 纺织学报, 2022, 43(02): 89-97.
[9] 徐兆宝, 何翠, 赵瑾朝, 黄乐平. 同轴静电纺多级微纳米纤维膜的制备及其相变调温性能[J]. 纺织学报, 2022, 43(02): 69-73.
[10] 贾琳, 王西贤, 李环宇, 张海霞, 覃小红. 聚丙烯腈/BaTiO3复合纳米纤维过滤膜的制备及其性能[J]. 纺织学报, 2021, 42(12): 34-41.
[11] 宋雪旸, 张岩, 徐成功, 王萍, 阮芳涛. 碳纤维/聚丙烯/聚乳酸增强复合材料的力学性能[J]. 纺织学报, 2021, 42(11): 84-88.
[12] 权震震, 王亦涵, 祖遥, 覃小红. 多曲面喷头静电纺射流形成机制与成膜特性[J]. 纺织学报, 2021, 42(09): 39-45.
[13] 高猛, 王增元, 漏琦伟, 陈钢进. 电晕驻极熔喷聚丙烯驻极体非织造布的电荷捕获特性[J]. 纺织学报, 2021, 42(09): 52-58.
[14] 阳智, 刘呈坤, 吴红, 毛雪. 木质素/聚丙烯腈基碳纤维的制备及其表征[J]. 纺织学报, 2021, 42(07): 54-61.
[15] 刘晓倩, 陈玉, 周惠敏, 闫源, 夏鑫. 等离子体接枝丙烯酸改性聚丙烯腈导电纳米纤维纱线的制备[J]. 纺织学报, 2021, 42(05): 109-114.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!