纺织学报 ›› 2022, Vol. 43 ›› Issue (05): 86-91.doi: 10.13475/j.fzxb.20210606406
YAO Mingyuan1, LIU Ningjuan1, WANG Jianing1, XU Fujun2, LIU Wei1()
摘要:
碳纳米管(CNT)具有优异的电学性能,为了更好地将其应用于纺织品加热领域,采用加捻CNT薄膜的方法制备膜卷纱,并通过预喷涂导电聚合物聚(3,4-乙烯二氧噻吩):聚(苯乙烯磺酸盐) (PEDOT:PSS)溶液的方式进一步优化CNT膜卷纱的电热性能;随后分析PEDOT:PSS喷涂浓度对CNT薄膜及其膜卷纱的结构和导电性能的影响,以及施加不同电压条件下CNT薄膜及其膜卷纱的温度变化。结果表明:随着PEDOT:PSS质量分数从0.01%增加至1.4%,所喷涂的CNT薄膜电导率由344.2 S/cm逐渐增大至668.9 S/cm;当PEDOT:PSS质量分数为0.07%时,所制备的CNT复合膜卷纱具有优异的电热性能,当在其两端施加电压时,温度可到达214 ℃,响应时间为5 s,发热温度是其未加捻薄膜的1.6倍,具有较好的应用潜力和开发价值。
中图分类号:
[1] | 白洁. 智能纺织品的分类及其应用[J]. 毛纺科技, 2019, 47(4): 79-83. |
BAI Jie. Classification and application of intelligent texti-les[J]. Wool Textile Journal, 2019, 47(4): 79-83. | |
[2] | 李萍, 蒋晓文. 智能电加热服的研究进展[J]. 棉纺织技术, 2019, 47(9): 79-84. |
LI Ping, JIANG Xiaowen. Research progress of intelligent electric heating clothing[J]. Cotton Textile Technology, 2019, 47(9): 79-84. | |
[3] | 钱江瑞, 蔡彦, 杨允出, 等. 热疗纺织品热性能测试评价及传热机制研究进展[J]. 现代纺织技术, 2020, 28(3): 41-47. |
QIAN Jiangrui, CAI Yan, YANG Yunchu, et al. Research progress on thermal performance evaluation and heat transfer mechanism of hyperthermia textiles[J]. Advanced Textile Technology, 2020, 28(3): 41-47. | |
[4] |
IM H, JANG E Y, CHOI A, et al. Enhancement of heating performance of carbon nanotube sheet with granular metal[J]. Acs Appl Mater Inter, 2012, 4(5): 2338-2342.
doi: 10.1021/am300477u |
[5] |
SHIN K Y, HONG J Y, LEE S, et al. High electrothermal performance of expanded graphite nanoplatelet-based patch heater[J]. J Mater Chem, 2015, 22(44): 23404-23410.
doi: 10.1039/c2jm34196d |
[6] | WAN N, SUN L T, DING S N, et al. Synthesis of graphene-CNT hybrids via joule heating: structural characterization and electrical transport[J]. Carbon, 2013(53): 260-268. |
[7] |
DEVOLDER M F, TAWFICK S H, BAUGHMAN R H, et al. Carbon nanotubes: present and future commercial applications[J]. Science, 2013, 339(6119): 535-539.
doi: 10.1126/science.1222453 |
[8] | 贾可, 刘玮, 刘宁娟, 等. 碳纳米管纱线及其复合纤维与纺织品的制备研究现状[J]. 产业用纺织品, 2020, 38(9): 5-12. |
JIA Ke, LIU Wei, LIU Ningjuan, et al. Research status of preparation of carbon nanotube yarn and its composite fiber and textiles[J]. Technical Textiles, 2020, 38(9): 5-12. | |
[9] |
LIU P, LIU L, JIANG K, et al. Carbon nanotube film microheater on a polyethylene terephthalate substrate and its application in thermochromic displays[J]. Small, 2011, 7(6): 732-736.
doi: 10.1002/smll.201001662 |
[10] | LUO Jie, LU Huifen, ZHANG Qichong, et al. Flexible carbon nanotube/polyurethane electrothermal films[J]. Carbon, 2016(110): 343-349. |
[11] |
POST E R, ORTH M, RUSSO P R, et al. E-broidery: design and fabrication of textile-based computing[J]. IBM Systems Journal, 2000, 39(3): 840-860.
doi: 10.1147/sj.393.0840 |
[12] |
LI Y, SHANG Y, HE X, et al. Overtwisted, resolvable carbon nanotube yarn entanglement as strain sensors and rotational actuators[J]. ACS Nano, 2013, 7(9): 8128-8135.
doi: 10.1021/nn403400c |
[13] |
SHANG Y, LI Y, HE X, et al. Highly twisted double-helix carbon nanotube yarns[J]. ACS Nano, 2013, 7(2):1446-1453.
doi: 10.1021/nn305209h |
[14] | YAN J, JEONG Y G. Highly elastic and transparent multiwalled carbon nanotube/polydimethylsiloxane bilayer films as electric heating materials[J]. Materials & Design, 2015, 36(86): 72-9. |
[1] | 王璐, 韩雪, 娄琳, 何令华, 周小红. 电热防护手套研制及其在极端寒冷环境下的工效实验[J]. 纺织学报, 2021, 42(05): 150-154. |
[2] | 许静娴 刘莉 李俊. 镀银纱线电热针织物的开发及性能评价[J]. 纺织学报, 2016, 37(12): 24-28. |
[3] | 陈莉 刘皓. 可加热纬编针织物的电热性能[J]. 纺织学报, 2015, 36(04): 50-54. |
|