纺织学报 ›› 2022, Vol. 43 ›› Issue (02): 162-170.doi: 10.13475/j.fzxb.20210606609
谢爱玲1,2, 乐昱含1,2, 艾馨1,2, 王亚辉1,2, 王义容1,2, 陈新彭1,2, 陈国强1,2, 邢铁玲1,2()
XIE Ailing1,2, YUE Yuhan1,2, AI Xin1,2, WANG Yahui1,2, WANG Yirong1,2, CHEN Xinpeng1,2, CHEN Guoqiang1,2, XING Tieling1,2()
摘要:
为提高超疏水织物的耐久性,采用强黏附性物质茶多酚(Tps)、十六烷基三甲氧基硅烷(HDS)和七水合硫酸亚铁对涤纶织物进行整理,并对整理织物的表面形貌、化学组成、超疏水稳定性和油水分离性能进行测试与表征。结果表明:当茶多酚质量浓度为2 g/L,十六烷基三甲氧基硅烷用量为150 μL/L,七水合硫酸亚铁质量浓度为6 g/L时,整理织物表现出良好的超疏水性,静态水接触角达到163.1°,滚动角达到3.5°,其在水洗、机械磨损、紫外线辐照、模拟海水、酸碱环境及有机试剂浸泡等条件下均表现出良好的稳定性;在油水分离多次循环测试中,分离效率保持在95%以上。超疏水涤纶织物制备过程简单,稳定性良好,在油水分离领域具有广阔的应用前景。
中图分类号:
[1] |
LI J, CHEN C F, YANG H, et al. Tea polyphenols regulate gut microbiota dysbiosis induced by antibiotic in mice[J]. Food Research International, 2021, 141(3): 110153.
doi: 10.1016/j.foodres.2021.110153 |
[2] |
AKHAVAN O, KALAEE M, ALAVI Z S, et al. Increasing the antioxidant activity of green tea polyphenols in the presence of iron for the reduction of graphene oxide[J]. Carbon, 2012, 50(8): 3015-3025.
doi: 10.1016/j.carbon.2012.02.087 |
[3] | YI Z, CUI X X, CHEN G C, et al. Biocompatible, antioxidant nanoparticles prepared from natural renewable tea polyphenols and human hair keratins for cell protection and anti-inflammation[J]. ACS Biomaterials Science & Engineering, 2021, 7(3): 1046-1057. |
[4] |
CHEN D, ZHU X, LLAVSKY J, et al. Polyphenols weaken pea protein gel by formation of large aggregates with diminished noncovalent interactions[J]. Biomacromolecules, 2021, 22(2): 1001-1014.
doi: 10.1021/acs.biomac.0c01753 |
[5] | FAN Z. Interactions between starch and phenolic compound[J]. Trends in Food Science & Technology, 2015, 43(2): 129-143. |
[6] |
OU J F, WANG F J, LI W, et al. Methyltrimethoxysilane as a multipurpose chemical for durable superhydrophobic cotton fabric[J]. Progress in Organic Coatings, 2020, 146:105700.
doi: 10.1016/j.porgcoat.2020.105700 |
[7] |
TUDU B K, SINHAMAHAPATRA A, KUMAR A. Surface modification of cotton fabric using tio2 nanoparticles for self-cleaning, oil-water separation, antistain, anti-water absorption, and antibacterial properties[J]. ACS Omega, 2020, 5(14): 7850-7860.
doi: 10.1021/acsomega.9b04067 |
[8] |
WU J J, LI H Q, LAI X J, et al. Conductive and superhydrophobic F-rGO@CNTs/chitosan aerogel for piezoresistive pressure sensor[J]. Chemical Engineering Journal, 2019, 386:123998.
doi: 10.1016/j.cej.2019.123998 |
[9] |
CHENG D S, ZHANG Y L, BAI X, et al. Mussel-inspired fabrication of superhydrophobic cotton fabric for oil/water separation and visible light photocatalytic[J]. Cellulose, 2020, 27(9): 5421-5433.
doi: 10.1007/s10570-020-03149-y |
[10] | 徐林, 任煜, 张红阳, 等. 涤纶织物表面TiO2/氟硅烷超疏水层构筑及其性能[J]. 纺织学报, 2019, 40(12): 86-92. |
XU Lin, REN Yu, ZHANG Hongyang, et al. Construction and properties of superhydrophobic layer of titania/fluorosilane on polyester fabric surface[J]. Journal of Textile Research, 2019, 40(12): 86-92. | |
[11] |
GU H H, LI G Q, LI P P, et al. Superhydrophobic and breathable SiO2/polyurethane porous membrane for durable water repellent application and oil-water separation[J]. Applied Surface Science, 2019, 512:144837.
doi: 10.1016/j.apsusc.2019.144837 |
[12] | 郝尚, 谢源, 翁佳丽, 等. 溶解刻蚀辅助构建棉织物超疏水表面[J]. 纺织学报, 2021, 42(2): 168-173,179. |
HAO Shang, XIE Yuan, WENG Jiali, et al. Construction of superhydrophobic surface of cotton fabrics via dissolving etching[J]. Journal of Textile Research, 2021, 42(2): 168-173,179. | |
[13] |
ZHOU F, ZHANG Y F, ZHANG D S, et al. Fabrication of robust and self-healing superhydrophobic PET fabrics based on profiled fiber structure[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 609:125680.
doi: 10.1016/j.colsurfa.2020.125680 |
[14] | LAMBERT J D, ELIAS R J. The antioxidant and pro-oxidant activities of green tea polyphenols: a role in cancer prevention[J]. Archives of Biochemistry & Biophysics, 2010, 501(1): 65-72. |
[15] |
RYAN P, HYNES M J. The kinetics and mechanisms of the complex formation and antioxidant behaviour of the polyphenols EGCg and ECG with iron(III)[J]. Journal of Inorganic Biochemistry, 2007, 101(4): 585-593.
doi: 10.1016/j.jinorgbio.2006.12.001 |
[16] | 王旭捷, 陈春凤, 杨慧, 等. 茶多酚金属络合物的制备及其抑菌活性[J]. 食品工业科技, 2020, 41(24): 113-117, 124. |
WANG Xujie, CHEN Chunfeng, YANG Hui, et al. Preparation and bacteriostatic activity of tea polyphenol-metal complexes[J]. Science and Technology of Food Industry, 2020, 41(24): 113-117, 124. | |
[17] |
RAHMAN M A, LEE S, PARK C H. A facile and non-toxic approach to develop superhydrophobic cotton fabric using octadecylamine and hexadecyltrimethoxysilane in aqueous system[J]. Fibers and Polymers, 2021, 22(1): 131-140.
doi: 10.1007/s12221-021-9645-5 |
[18] |
ZHANG Z Y, LIU H, QIAO W C. Reduced graphene-based superhydrophobic sponges modified by hexadecyltrimethoxysilane for oil adsorption[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 589:124433.
doi: 10.1016/j.colsurfa.2020.124433 |
[19] |
LIU X L, GU Y C, MI T F, et al. Dip-coating approach to fabricate durable PDMS/STA/SiO2superhydrophobic polyester fabrics[J]. Coatings, 2021, 11(3): 326.
doi: 10.3390/coatings11030326 |
[20] |
FAN L, LI B C, ZHANG J P. Antibioadhesive superhydrophobic syringe needles inspired by mussels and lotus leafs[J]. Advanced Materials Interfaces, 2015, 2(8): 1500019.
doi: 10.1002/admi.201500019 |
[21] |
ZHANG C, OU Y, LEI W X, et al. CuSO4/H2O2‐induced rapid deposition of polydopamine coatings with high uniformity and enhanced stability[J]. Angewandte Chemie International Edition, 2016, 55(9): 3054-3057.
doi: 10.1002/anie.201510724 |
[22] |
FU S D, ZHOU H, WANG H X, et al. Magnet-responsive, superhydrophobic fabrics from waterborne, fluoride-free coatings[J]. Rsc Advances, 2018, 8(2): 717-723.
doi: 10.1039/C7RA10941E |
[1] | 杨腾祥, 申国栋, 钱利江, 胡华军, 毛雪, 孙润军. 外电场极化银-钛酸钡/涤纶织物制备及其光催化性能[J]. 纺织学报, 2022, 43(02): 189-195. |
[2] | 骆晓蕾, 刘琳, 姚菊明. 纯生物质纤维素气凝胶的制备及其阻燃性能[J]. 纺织学报, 2022, 43(01): 1-8. |
[3] | 高强, 王晓, 郭亚杰, 陈茹, 魏菊. 棉基Ti3C2Tx油水分离膜的制备及其性能[J]. 纺织学报, 2022, 43(01): 172-177. |
[4] | 朱兰芳, 白洁, 周吟澄, 侯成伟. 超声波处理对涤纶织物聚氨酯涂层中4,4'-二氨基二苯甲烷的影响[J]. 纺织学报, 2021, 42(11): 124-128. |
[5] | 普丹丹, 傅雅琴. 涤纶织物/聚氯乙烯-中空微珠复合材料的制备及其隔声性能[J]. 纺织学报, 2021, 42(11): 77-83. |
[6] | 李维斌, 张程, 刘军. 超疏水棉织物制备及其在油水过滤分离中应用[J]. 纺织学报, 2021, 42(08): 109-114. |
[7] | 余钰骢, 史晓龙, 刘琳, 姚菊明. 用于油水分离的超润湿性纺织品研究进展[J]. 纺织学报, 2020, 41(11): 189-196. |
[8] | 李亮, 刘静芳, 胡泽栋, 耿长军, 刘让同. 涤纶织物的氧化石墨烯负载及其抗静电性能[J]. 纺织学报, 2020, 41(09): 102-107. |
[9] | 郝志奋, 徐乃库, 封严, 段梦馨, 肖长发. 聚甲基丙烯酸酯/聚丙烯酸酯共混纤维膜制备及其油水分离性能[J]. 纺织学报, 2020, 41(06): 21-26. |
[10] | 张一敏, 周伟涛, 何建新, 杜姗, 陈香香, 崔世忠. 偕胺肟化SiO2/聚丙烯腈复合纤维膜的制备及其性能[J]. 纺织学报, 2020, 41(05): 25-29. |
[11] | 刘国金, 韩朋帅, 柴丽琴, 吴钰, 李慧, 高雅芳, 周岚. 涤纶织物上自交联型P(St-NMA)光子晶体的构筑及其结构稳固性[J]. 纺织学报, 2020, 41(05): 99-104. |
[12] | 王邓峰, 王宗乾, 范祥雨, 宋波, 李禹. 天然中空异形萝藦种毛纤维的吸油性能[J]. 纺织学报, 2020, 41(04): 26-32. |
[13] | 王晓菲, 万爱兰. 紫外线辐照聚吡咯/银导电涤纶织物的制备[J]. 纺织学报, 2020, 41(04): 112-116. |
[14] | 谭淋, 施亦东, 周文雅. 棉织物的硅溶胶疏水整理[J]. 纺织学报, 2020, 41(04): 106-111. |
[15] | 丁放, 任学宏. 磷氮阻燃剂对涤纶织物的阻燃整理[J]. 纺织学报, 2020, 41(03): 100-105. |
|