纺织学报 ›› 2022, Vol. 43 ›› Issue (02): 162-170.doi: 10.13475/j.fzxb.20210606609

• 染整与化学品 • 上一篇    下一篇

茶多酚改性超疏水涤纶织物制备及其在油水分离中的应用

谢爱玲1,2, 乐昱含1,2, 艾馨1,2, 王亚辉1,2, 王义容1,2, 陈新彭1,2, 陈国强1,2, 邢铁玲1,2()   

  1. 1.苏州大学 纺织与服装工程学院, 江苏 苏州 215021
    2.江苏省纺织印染节能减排与清洁生产工程中心, 江苏 苏州 215021
  • 收稿日期:2021-06-23 修回日期:2021-12-01 出版日期:2022-02-15 发布日期:2022-03-15
  • 通讯作者: 邢铁玲
  • 作者简介:谢爱玲(1996—),女,硕士生。主要研究方向为超疏水纺织品。
  • 基金资助:
    国家自然科学基金项目(51973144);国家自然科学基金项目(51741301);江苏省高校自然科学研究重点项目(18KJA540002);江苏高校优势学科建设工程资助项目(苏政办发[2018]87号)

Preparation of superhydrophobic polyester fabric modified by tea polyphenols for oil-water separation

XIE Ailing1,2, YUE Yuhan1,2, AI Xin1,2, WANG Yahui1,2, WANG Yirong1,2, CHEN Xinpeng1,2, CHEN Guoqiang1,2, XING Tieling1,2()   

  1. 1. College of Textile and Clothing Engineering, Soochow University, Suzhou, Jiangsu 215021, China
    2. Jiangsu Engineering Research Center of Textile Dyeing and Printing for Energy Conservation, Discharge Reduction and Cleaner Production(ERC), Suzhou, Jiangsu 215021, China
  • Received:2021-06-23 Revised:2021-12-01 Published:2022-02-15 Online:2022-03-15
  • Contact: XING Tieling

摘要:

为提高超疏水织物的耐久性,采用强黏附性物质茶多酚(Tps)、十六烷基三甲氧基硅烷(HDS)和七水合硫酸亚铁对涤纶织物进行整理,并对整理织物的表面形貌、化学组成、超疏水稳定性和油水分离性能进行测试与表征。结果表明:当茶多酚质量浓度为2 g/L,十六烷基三甲氧基硅烷用量为150 μL/L,七水合硫酸亚铁质量浓度为6 g/L时,整理织物表现出良好的超疏水性,静态水接触角达到163.1°,滚动角达到3.5°,其在水洗、机械磨损、紫外线辐照、模拟海水、酸碱环境及有机试剂浸泡等条件下均表现出良好的稳定性;在油水分离多次循环测试中,分离效率保持在95%以上。超疏水涤纶织物制备过程简单,稳定性良好,在油水分离领域具有广阔的应用前景。

关键词: 涤纶织物, 茶多酚, 超疏水性能, 十六烷基三甲氧基硅烷, 油水分离

Abstract:

In order to improve the durability of superhydrophobic fabrics, a polyester (PET) fabric was treated with strong adhesion substances including tea polyphenols (Tps), Hexadecyltrimethoxysilane (HDS) and FeSO4·7H2O. Surface morphology, chemical composition, superhydrophobic stability and oil-water separation performance of the prepared PET fabric were tested and characterized. The results show that when Tps is 2 g/L, HDS is 150 μL/L and FeSO4·7H2O is 6 g/L, the prepared PET fabric showed good superhydrophobic property with water contact angle of 163.1° and the scrolling angle of 3.5°. The treated fabric shows good stability under the conditions of water washing, mechanical wear, mechanical friction, UV irradiation, simulated seawater, acid-alkaline and organic reagents. In the cyclic test for oil-water separation, the separation efficiency remains above 95%. The preparation process of superhydrophobic PET fabric is simple and has good stability, which has broad application prospects in the field of oil-water separation.

Key words: polyester fabric, tea polyphenols, superhydrophobic property, hexadecyltrimethoxysilane, oil-water separation

中图分类号: 

  • TS193

图1

超疏水涤纶织物制备过程示意图"

表1

涤纶织物的表面元素含量"

样品 表面元素含量/%
C N O Fe Si
原涤纶织物 68.34 0 31.66 0 0
HDS整理涤纶织物 79.28 0 15.11 0 5.61
Tps/Fe整理涤纶织物 72.96 1.19 24.65 1.20 0
Tps/HDS整理涤纶织物 75.64 0.78 16.46 0 7.12
Tps/Fe/HDS整理涤纶织物 76.67 0.65 15.02 0.80 6.86

图2

涤纶织物的SEM照片与接触角图"

图3

不同涤纶织物的FT-IR谱图和XPS宽谱图"

图4

原涤纶织物和Tps/Fe/HDS整理涤纶织物C1s光谱"

图5

Tps/Fe/HDS整理涤纶织物的Si2p光谱和Fe2p光谱"

表2

原涤纶织物与Tps/Fe/HDS整理涤纶织物的的力学性能"

织物 断裂强力/N 断裂伸长率/%
经向 纬向 经向 纬向
原涤纶
织物
660.54±12.68 412.51±16.53 19.91±0.25 19.12±0.57
Tps/Fe/HDS整理涤纶织物 638.01±12.24 391.87±10.39 18.05±0.49 17.99±0.60

图6

原涤纶织物与Tps/Fe/HDS 整理涤纶织物的热重曲线"

图7

Tps/Fe/HDS整理涤纶织物的稳定性"

图8

涤纶织物的自清洁、防污性能"

图9

油水分离测试照片"

图10

油水分离性能"

[1] LI J, CHEN C F, YANG H, et al. Tea polyphenols regulate gut microbiota dysbiosis induced by antibiotic in mice[J]. Food Research International, 2021, 141(3): 110153.
doi: 10.1016/j.foodres.2021.110153
[2] AKHAVAN O, KALAEE M, ALAVI Z S, et al. Increasing the antioxidant activity of green tea polyphenols in the presence of iron for the reduction of graphene oxide[J]. Carbon, 2012, 50(8): 3015-3025.
doi: 10.1016/j.carbon.2012.02.087
[3] YI Z, CUI X X, CHEN G C, et al. Biocompatible, antioxidant nanoparticles prepared from natural renewable tea polyphenols and human hair keratins for cell protection and anti-inflammation[J]. ACS Biomaterials Science & Engineering, 2021, 7(3): 1046-1057.
[4] CHEN D, ZHU X, LLAVSKY J, et al. Polyphenols weaken pea protein gel by formation of large aggregates with diminished noncovalent interactions[J]. Biomacromolecules, 2021, 22(2): 1001-1014.
doi: 10.1021/acs.biomac.0c01753
[5] FAN Z. Interactions between starch and phenolic compound[J]. Trends in Food Science & Technology, 2015, 43(2): 129-143.
[6] OU J F, WANG F J, LI W, et al. Methyltrimethoxysilane as a multipurpose chemical for durable superhydrophobic cotton fabric[J]. Progress in Organic Coatings, 2020, 146:105700.
doi: 10.1016/j.porgcoat.2020.105700
[7] TUDU B K, SINHAMAHAPATRA A, KUMAR A. Surface modification of cotton fabric using tio2 nanoparticles for self-cleaning, oil-water separation, antistain, anti-water absorption, and antibacterial properties[J]. ACS Omega, 2020, 5(14): 7850-7860.
doi: 10.1021/acsomega.9b04067
[8] WU J J, LI H Q, LAI X J, et al. Conductive and superhydrophobic F-rGO@CNTs/chitosan aerogel for piezoresistive pressure sensor[J]. Chemical Engineering Journal, 2019, 386:123998.
doi: 10.1016/j.cej.2019.123998
[9] CHENG D S, ZHANG Y L, BAI X, et al. Mussel-inspired fabrication of superhydrophobic cotton fabric for oil/water separation and visible light photocatalytic[J]. Cellulose, 2020, 27(9): 5421-5433.
doi: 10.1007/s10570-020-03149-y
[10] 徐林, 任煜, 张红阳, 等. 涤纶织物表面TiO2/氟硅烷超疏水层构筑及其性能[J]. 纺织学报, 2019, 40(12): 86-92.
XU Lin, REN Yu, ZHANG Hongyang, et al. Construction and properties of superhydrophobic layer of titania/fluorosilane on polyester fabric surface[J]. Journal of Textile Research, 2019, 40(12): 86-92.
[11] GU H H, LI G Q, LI P P, et al. Superhydrophobic and breathable SiO2/polyurethane porous membrane for durable water repellent application and oil-water separation[J]. Applied Surface Science, 2019, 512:144837.
doi: 10.1016/j.apsusc.2019.144837
[12] 郝尚, 谢源, 翁佳丽, 等. 溶解刻蚀辅助构建棉织物超疏水表面[J]. 纺织学报, 2021, 42(2): 168-173,179.
HAO Shang, XIE Yuan, WENG Jiali, et al. Construction of superhydrophobic surface of cotton fabrics via dissolving etching[J]. Journal of Textile Research, 2021, 42(2): 168-173,179.
[13] ZHOU F, ZHANG Y F, ZHANG D S, et al. Fabrication of robust and self-healing superhydrophobic PET fabrics based on profiled fiber structure[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 609:125680.
doi: 10.1016/j.colsurfa.2020.125680
[14] LAMBERT J D, ELIAS R J. The antioxidant and pro-oxidant activities of green tea polyphenols: a role in cancer prevention[J]. Archives of Biochemistry & Biophysics, 2010, 501(1): 65-72.
[15] RYAN P, HYNES M J. The kinetics and mechanisms of the complex formation and antioxidant behaviour of the polyphenols EGCg and ECG with iron(III)[J]. Journal of Inorganic Biochemistry, 2007, 101(4): 585-593.
doi: 10.1016/j.jinorgbio.2006.12.001
[16] 王旭捷, 陈春凤, 杨慧, 等. 茶多酚金属络合物的制备及其抑菌活性[J]. 食品工业科技, 2020, 41(24): 113-117, 124.
WANG Xujie, CHEN Chunfeng, YANG Hui, et al. Preparation and bacteriostatic activity of tea polyphenol-metal complexes[J]. Science and Technology of Food Industry, 2020, 41(24): 113-117, 124.
[17] RAHMAN M A, LEE S, PARK C H. A facile and non-toxic approach to develop superhydrophobic cotton fabric using octadecylamine and hexadecyltrimethoxysilane in aqueous system[J]. Fibers and Polymers, 2021, 22(1): 131-140.
doi: 10.1007/s12221-021-9645-5
[18] ZHANG Z Y, LIU H, QIAO W C. Reduced graphene-based superhydrophobic sponges modified by hexadecyltrimethoxysilane for oil adsorption[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 589:124433.
doi: 10.1016/j.colsurfa.2020.124433
[19] LIU X L, GU Y C, MI T F, et al. Dip-coating approach to fabricate durable PDMS/STA/SiO2superhydrophobic polyester fabrics[J]. Coatings, 2021, 11(3): 326.
doi: 10.3390/coatings11030326
[20] FAN L, LI B C, ZHANG J P. Antibioadhesive superhydrophobic syringe needles inspired by mussels and lotus leafs[J]. Advanced Materials Interfaces, 2015, 2(8): 1500019.
doi: 10.1002/admi.201500019
[21] ZHANG C, OU Y, LEI W X, et al. CuSO4/H2O2‐induced rapid deposition of polydopamine coatings with high uniformity and enhanced stability[J]. Angewandte Chemie International Edition, 2016, 55(9): 3054-3057.
doi: 10.1002/anie.201510724
[22] FU S D, ZHOU H, WANG H X, et al. Magnet-responsive, superhydrophobic fabrics from waterborne, fluoride-free coatings[J]. Rsc Advances, 2018, 8(2): 717-723.
doi: 10.1039/C7RA10941E
[1] 杨腾祥, 申国栋, 钱利江, 胡华军, 毛雪, 孙润军. 外电场极化银-钛酸钡/涤纶织物制备及其光催化性能[J]. 纺织学报, 2022, 43(02): 189-195.
[2] 骆晓蕾, 刘琳, 姚菊明. 纯生物质纤维素气凝胶的制备及其阻燃性能[J]. 纺织学报, 2022, 43(01): 1-8.
[3] 高强, 王晓, 郭亚杰, 陈茹, 魏菊. 棉基Ti3C2Tx油水分离膜的制备及其性能[J]. 纺织学报, 2022, 43(01): 172-177.
[4] 朱兰芳, 白洁, 周吟澄, 侯成伟. 超声波处理对涤纶织物聚氨酯涂层中4,4'-二氨基二苯甲烷的影响[J]. 纺织学报, 2021, 42(11): 124-128.
[5] 普丹丹, 傅雅琴. 涤纶织物/聚氯乙烯-中空微珠复合材料的制备及其隔声性能[J]. 纺织学报, 2021, 42(11): 77-83.
[6] 李维斌, 张程, 刘军. 超疏水棉织物制备及其在油水过滤分离中应用[J]. 纺织学报, 2021, 42(08): 109-114.
[7] 余钰骢, 史晓龙, 刘琳, 姚菊明. 用于油水分离的超润湿性纺织品研究进展[J]. 纺织学报, 2020, 41(11): 189-196.
[8] 李亮, 刘静芳, 胡泽栋, 耿长军, 刘让同. 涤纶织物的氧化石墨烯负载及其抗静电性能[J]. 纺织学报, 2020, 41(09): 102-107.
[9] 郝志奋, 徐乃库, 封严, 段梦馨, 肖长发. 聚甲基丙烯酸酯/聚丙烯酸酯共混纤维膜制备及其油水分离性能[J]. 纺织学报, 2020, 41(06): 21-26.
[10] 张一敏, 周伟涛, 何建新, 杜姗, 陈香香, 崔世忠. 偕胺肟化SiO2/聚丙烯腈复合纤维膜的制备及其性能[J]. 纺织学报, 2020, 41(05): 25-29.
[11] 刘国金, 韩朋帅, 柴丽琴, 吴钰, 李慧, 高雅芳, 周岚. 涤纶织物上自交联型P(St-NMA)光子晶体的构筑及其结构稳固性[J]. 纺织学报, 2020, 41(05): 99-104.
[12] 王邓峰, 王宗乾, 范祥雨, 宋波, 李禹. 天然中空异形萝藦种毛纤维的吸油性能[J]. 纺织学报, 2020, 41(04): 26-32.
[13] 王晓菲, 万爱兰. 紫外线辐照聚吡咯/银导电涤纶织物的制备[J]. 纺织学报, 2020, 41(04): 112-116.
[14] 谭淋, 施亦东, 周文雅. 棉织物的硅溶胶疏水整理[J]. 纺织学报, 2020, 41(04): 106-111.
[15] 丁放, 任学宏. 磷氮阻燃剂对涤纶织物的阻燃整理[J]. 纺织学报, 2020, 41(03): 100-105.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 骆晓蕾, 刘琳, 姚菊明. 纯生物质纤维素气凝胶的制备及其阻燃性能[J]. 纺织学报, 2022, 43(01): 1 -8 .
[2] 李龙龙, 魏朋, 吴萃霞, 闫金飞, 娄贺娟, 张一风, 夏于旻, 王燕萍, 王依民. 基于对羟基苯丙酸的生物基液晶共聚酯纤维的合成与性能[J]. 纺织学报, 2022, 43(01): 9 -14 .
[3] 赵雅捷, 刘莉, 李依萌. 黑天鹅[J]. 纺织学报, 2022, 43(01): 217 .
[4] 赵雅捷, 刘莉. 太阳马戏团[J]. 纺织学报, 2022, 43(01): 218 .
[5] 匡丽赟, 李娜娜. 华彩[J]. 纺织学报, 2021, 42(11): 207 .
[6] 魏娜娜, 刘碟, 马政, 焦晨璐. 纤维素/壳聚糖磁性气凝胶的冻融法制备及其对染料吸附性能[J]. 纺织学报, 2022, 43(02): 53 -60 .
[7] 王锐, 刘彦麟, 刘蕴钰, 顾伟文, 刘紫灵, 魏建斐. 以聚对苯二甲酸乙二醇酯为前驱体的碳点制备及其应用[J]. 纺织学报, 2022, 43(02): 10 -18 .
[8] 史晟, 王彦, 李飞, 唐建东, 高翔宇, 侯文生, 郭红, 王淑花, 姬佳奇. 草酸稀溶液高效分离废旧聚酯/棉混纺织物[J]. 纺织学报, 2022, 43(02): 140 -148 .
[9] 陈咏, 乌婧, 王朝生, 潘小虎, 李乃祥, 戴钧明, 王华平. 生物可降解聚己二酸-对苯二甲酸丁二醇酯纤维的制备及其环境降解性能[J]. 纺织学报, 2022, 43(02): 37 -43 .
[10] 董晗, 郑森森, 郭涛, 董杰, 赵昕, 王士华, 张清华. 高耐热聚酰亚胺纤维的制备及其性能[J]. 纺织学报, 2022, 43(02): 19 -23 .