纺织学报 ›› 2022, Vol. 43 ›› Issue (08): 40-47.doi: 10.13475/j.fzxb.20210608708

• 纤维材料 • 上一篇    下一篇

抗菌和防紫外线双效功能聚乳酸/ZnO纤维的制备及其性能

朱燕龙1,2, 谷英姝1,2, 谷潇夏1,2, 董振峰1,2, 汪滨1,2, 张秀芹1,2()   

  1. 1.北京服装学院 服装材料研究开发与评价北京市重点实验室, 北京 100029
    2.北京市纺织纳米纤维工程技术研究中心, 北京 100029
  • 收稿日期:2021-06-30 修回日期:2022-01-25 出版日期:2022-08-15 发布日期:2022-08-24
  • 通讯作者: 张秀芹
  • 作者简介:朱燕龙(1998—),男,硕士。主要研究方向为生物可降解聚乳酸纤维的功能化。
  • 基金资助:
    国家自然科学基金项目(52173027);国家自然科学基金项目(51929301);国家自然科学基金项目(51673003);北京学者项目(RCQJ20303)

Preparation and properties of poly(lactic acid)/ZnO fiber with antibacterial and anti-ultraviolet functions

ZHU Yanlong1,2, GU Yingshu1,2, GU Xiaoxia1,2, DONG Zhenfeng1,2, WANG Bin1,2, ZHANG Xiuqin1,2()   

  1. 1. Beijing Key Laboratory of Clothing Materials R & D and Assessment, Beijing Institute of Fashion Technology, Beijing 100029, China
    2. Beijing Engineering Research Center of Textile Nano Fiber, Beijing 100029, China
  • Received:2021-06-30 Revised:2022-01-25 Published:2022-08-15 Online:2022-08-24
  • Contact: ZHANG Xiuqin

摘要:

为赋予聚乳酸(PLA)纤维高效的防紫外线性能和抗菌性能,以ZnO为功能粒子,采用熔融共混法制备了不同质量配比的PLA/ZnO共混物,对共混物的形貌结构、热性能、防紫外线性能和抗菌性能进行表征,选用最佳质量配比的共混物进行熔融纺丝制备PLA/ZnO纤维。结果表明:当ZnO母粒质量分数为5%时(ZnO质量分数为0.85%),ZnO粒子在PLA基体中分布均匀,PLA/ZnO共混物热稳定性较好,防紫外线和抗菌性能优异,紫外线防护系数达到663,且对大肠杆菌和金黄色葡萄球菌的抑菌率在99%以上;该比例的共混物具有良好的可纺性,制得的PLA/ZnO纤维的结晶度达30%以上,纤维的强度符合织造要求,制备的PLA/ZnO织物紫外线透过率低于30%,对大肠杆菌和金黄色葡萄球菌的抑菌率也高达99%,且织物水洗10次后抑菌率不变。

关键词: 功能性纤维, 聚乳酸纤维, 氧化锌, 共混改性, 抗菌性能, 防紫外线性能, 熔融纺丝

Abstract:

In order to endow poly(lactic acid)( PLA ) fiber with high anti-ultraviolet and antibacterial properties, PLA/ZnO blends with different mass ratios were prepared via melt blending method applying ZnO as functional particles. According to the morphology, thermal properties, anti-ultraviolet and antibacterial properties of the blends, the optimal mass ratio of the blend was chosen which was further fabricated into PLA/ZnO fiber through melt spinning. When the mass fraction of ZnO masterbatch was 5% with the mass fraction of ZnO being 0.85%, ZnO particles were uniformly distributed in the PLA matrix. The PLA/ZnO blend exhibited good thermal stability, excellent anti\|ultraviolet and antibacterial properties. The ultraviolet protection coefficient reached 663, and the antibacterial rate against Escherichia coli and Staphylococcus aureus was more than 99%. Moreover, the PLA/ZnO blend fiber showed good spinnability with crystallinity reaching more than 30% and the fiber strength meeting the weaving requirements. The ultraviolet transmittance of the prepared PLA/ZnO fabric is less than 30%, and its antibacterial rate against Escherichia coli and Staphylococcus aureus is as high as 99%, which can also be maintained after 10 washes.

Key words: functional fiber, poly(lactic acid) fiber, zinc oxide, blending modification, antibacterial property, anti-ultraviolet property, melt spinning

中图分类号: 

  • TQ316.67

表1

纯PLA及其共混物的不同配料比例"

样品编号 PLA质量分数 ZnO母粒质量分数
PLA 100 0
PLA/ZnO–3 97 3
PLA/ZnO–5 95 5
PLA/ZnO–10 90 10

图1

PLA/ZnO纤维与织物"

图2

纯PLA及其共混物截面的扫描电镜照片"

图3

纯PLA及其共混物的DSC曲线"

图4

纯PLA及其共混物的热重曲线"

图5

纯PLA及PLA/ZnO膜的紫外线透过率曲线"

表2

纯PLA及PLA/ZnO膜的防紫外线性能"

样品编号 平均UVA
透过率/%
平均UVB
透过率/%
UPF
平均值
PLA 83.80 65.32 1.43
PLA/ZnO–3 7.98 0.40 137
PLA/ZnO–5 2.45 0.06 663
PLA/ZnO–10 2.78 0.06 601

表3

纯PLA及PLA/ZnO膜的抗菌性能"

样品编号 抑菌率/%
对大肠杆菌 对金黄色葡萄球菌
PLA 29 54
PLA/ZnO–3 29 46
PLA/ZnO–5 >99 >99
PLA/ZnO–10 >99 >99

图6

纤维的二维WAXS图和一维衍射曲线"

表4

纤维的力学性能数据"

纤维名称 断裂强度/(cN·dtex–1) 断裂伸长率/%
PLA 3.4±0.1 23.9±1.5
PLA/ZnO–5 2.8±0.1 26.5±1.3

图7

织物的紫外线透过率曲线"

图8

织物对大肠杆菌和金黄色葡萄球菌的抗菌性能"

[1] 盛宇, 徐丽慧, 孟云, 等. 用SiO2/TiO2复合气凝胶制备超疏水光催化防紫外线织物[J]. 纺织学报, 2019, 40(7): 90-96.
SHENG Yu, XU Lihui, MENG Yun, et al. Preparation of superhydrophobic, photocatalytic and UV-blocking textiles based on SiO2/TiO2 composite aerogels[J]. Journal of Textile Research, 2019, 40(7): 90-96.
[2] YAN Z, JIAN J, TING L, et al. A molecularly engineered bioderived polyphosphate for enhanced flame retardant, UV-blocking and mechanical properties of poly(lactic acid)[J]. Chemical Engineering Journal, 2021, 411(7): 128493-128506.
doi: 10.1016/j.cej.2021.128493
[3] MARRA A, SILVESTRE C, DURACCIO D, et al. Polylactic acid/zinc oxide biocomposite films for food packaging application[J]. International Journal of Biological Macromolecules, 2016, 88: 254-262.
doi: 10.1016/j.ijbiomac.2016.03.039
[4] JIANG N, LI Y M, Y K, et al. Effect of short jute fibers on the hydrolytic degradation behavior of poly(lactic acid)[J]. Polymer Degradation and Stability, 2020, 178: 109214-109226.
doi: 10.1016/j.polymdegradstab.2020.109214
[5] YANG B, WANG R, MA H L, et al. Structure mediation and properties of poly(L-lactide)/poly(D-lactide) blend fibers[J]. Polymers, 2018, 1353: 1-11.
[6] QI Y, MA H L, DU Z H, et al. Hydrophilic and antibacterial modification of poly(lactic acid) films by γ-ray irradiation[J]. ACS Omega, 2019, 4: 21439-21445.
doi: 10.1021/acsomega.9b03132
[7] XU Q, HUANG Z, JI S T, et al. Cu2O nanoparticles grafting onto PLA fibers via electron beam irradiation: bifunctional composite fibers with enhanced photocatalytic of organic pollutants in aqueous and soil systems[J]. Journal of Radioanalytical and Nuclear Chemistry, 2020, 323(1): 253-261.
doi: 10.1007/s10967-019-06842-w
[8] 杨博, 李琦, 李晓露, 等. 成核剂对聚左旋乳酸和聚右旋乳酸共混物结晶性能的调控[J]. 化工新型材料, 2019, 47(2): 188-192.
YANG Bo, LI Qi, LI Xiaolu, et al. Influence of nucleating agent on crystallization behavior of L-polylatic acid/D-polylatic acid[J]. New Chemical Materials, 2019, 47(2): 188-192.
[9] 秦霸, 朱砂, 吕承航, 等. 聚乳酸基抗菌材料研究现状[J]. 工程塑料应用, 2020, 40(8): 153-188.
QIN Ba, ZHU Sha, LÜ Chenghang, et al. Research status of polylactic acid based antibacterial materials[J]. Engineering Plastics Application, 2020, 40(8): 153-188.
[10] ZHANG R, LAN W J, JI T T, et al. Development of polylactic acid/ZnO composite membranes prepared by ultrasonication and electrospinning for food packaging[J]. LWT-Food Science and Technology, 2020, 135: 110072-110104.
doi: 10.1016/j.lwt.2020.110072
[11] 孙辉, 张恒源, 咸玉龙, 等. TiO2-Ag/聚乳酸纳米复合纤维的制备及其抗菌性能[J]. 纺织学报, 2019, 40(4): 1-6.
SUN Hui, ZHANG Hengyuan, XIAN Yulong, et al. Preparation and antibacterial properties of TiO2-Ag/poly(lactic acid) nano-composite fibers[J]. Journal of Textile Research, 2019, 40(4): 1-6.
doi: 10.1177/004051757004000101
[12] 程冰莹, 游少奇, 陈嘉毅, 等. 芦荟银掺杂纳米氧化锌合成及对织物的功能整理[J]. 上海纺织科技, 2020, 48(4): 54-60.
CHENG Bingying, YOU Shaoqi, CHEN Jiayi, et al. Synthesis of Ag-doped ZnO nanoparticles using Aloe Vera leaf extraction and its application in functional finishing of fabrics[J]. Shanghai Textile Science & Technology, 2020, 48(4): 54-60.
[13] 袁明伟, 曹剑飞, 鲁越, 等. 纳米ZnO-PLLA/聚乳酸复合薄膜的性能研究[J]. 塑料工业, 2018, 46(3):124-127.
YUAN Mingwei, CAO Jianfei, LU Yue, et al. Study on properties of nano-ZnO-PLLA/PLLA composite films[J]. China Plastics Industry, 2018, 46(3): 124-127.
[14] SHANKAR S, WANG L F, RHIM J W. Incorporation of zinc oxide nanoparticles improved the mechanical, water vapor barrier, UV-light barrier, and antibacterial properties of PLA-based nanocomposite films[J]. Materials Science & Engineering C:Materials for Biological Applications, 2018, 93 (1): 289-298.
[15] LI X L, ZHANG X Q, LIU G M, et al. Effect of stereocomplex crystal and flexible segments on the crystallization and tensile[J]. RSC Advances, 2018, 8(50): 28453-28460.
doi: 10.1039/C8RA05355C
[16] ALOJZ A, ANDREJ K, EMA Ž, et al. Degradation of PLA/ZnO and PHBV/ZnO composites prepared by melt processing[J]. Original Article, 2018, 3(11): 343-352.
[17] 张安莹, 王照颖, 王锐, 等. 阻燃聚左旋乳酸及其纤维的制备与结构性能[J]. 纺织学报, 2019, 40(4): 7-13.
ZHANG Anying, WANG Zhaoying, WANG Rui, et al. Preparation and structural properties of flame retardant poly(L-lactic acid) and fiber thereof[J]. Journal of Textile Research, 2019, 40(4): 7-13.
[18] 李冲, 周晓静, 何晓红, 等. PLA/ZnO复合材料的非等温热解动力学研究[J]. 化工技术与开发, 2018, 47(7): 11-16.
LI Chong, ZHOU Xiaojing, HE Xiaohong, et al. Study on thermostability and non-isothermal thermal decomposition kinetics of PLA/ZnO composites[J]. Technology & Development of Chemical Industry, 2018, 47(7): 11-16.
[19] 商世广, 蒋建朋, 杜玉环, 等. 氧化锌纳米棒紫外探测器的制备及性能[J]. 西安邮电大学学报, 2019, 24(1): 58-62.
SHANG Shiguang, JIANG Jianpeng, DU Yuhuan, et al. Fabrication and performance of zinc oxide nanorods based photoconductive ultraviolet detectors[J]. Journal of Xi'an University of Posts and Telecommunications, 2019, 24(1): 58-62.
[20] DANIA O, JAVIER G W. Polymeric materials with antibacterial activity: a review[J]. Polymers, 2021, 13(4): 613-640.
doi: 10.3390/polym13040613
[21] RIDWAN R, RIHAYAT T, SURYANI S, et al. Combination of poly lactid acid zinc oxide nanocomposite for antimicrobial packaging application[J]. IOP Conference Series: Materials Science and Engineering, 2020, 830(4): 042018-042025.
doi: 10.1088/1757-899X/830/4/042018
[22] 戴沈华, 翁良, 李冰艳, 等. 负载纳米ZnO的聚氨酯/聚酯纤维发泡复合绵的制备及其性能[J]. 纺织学报, 2021, 42(8): 96-101.
DAI Shenhua, WENG Liang, LI Bingyan, et al. Preparation and properties of nano ZnO loaded polyurethane/polyester foamed composite sponge[J]. Journal of Textile Research, 2021, 42(8): 96-101.
doi: 10.1177/004051757204200205
[23] 陈晓浪, 白竹煜, 吴一帆, 等. 嵌段比对左旋聚乳酸基立构复合物结晶行为及形貌的影响[J]. 功能材料, 2020, 51(12): 12142-12146.
CHEN Xiaolang, BAI Zhuyu, WU Yifan, et al. The influence of block ratio on crystallization behavior and morphology of PLLA-based stereocomplex[J]. Journal of Functional Materials, 2020, 51(12): 12142-12146.
[24] CHU Z Z, ZHAO T R, LI L, et al. Characterization of antimicrobial poly(lactic acid)/nano-composite films with silver and zinc oxide nanoparticles[J]. Materials, 2017, 10(6): 659-672.
doi: 10.3390/ma10060659
[1] 熊坦平, 谭飞, 黄成, 阎克路, 邹妮, 王政, 叶敬平, 纪柏林. 氯胺接枝涤纶/锦纶超细纤维针织物的抗菌性能[J]. 纺织学报, 2022, 43(08): 101-106.
[2] 李伟平, 杨桂霞, 程志强, 赵春莉. 聚乙烯吡咯烷酮/芦荟复合纳米纤维膜的制备及其性能[J]. 纺织学报, 2022, 43(08): 55-59.
[3] 刘彦麟, 顾伟文, 魏建斐, 王文庆, 王锐. 耐热聚乳酸材料的研究进展[J]. 纺织学报, 2022, 43(06): 180-186.
[4] 渠赟, 马维, 刘颖, 任学宏. 可光降解聚羟基丁酸酯/聚己内酯基抗菌纤维膜的制备及其性能[J]. 纺织学报, 2022, 43(06): 29-36.
[5] 欧康康, 祁琳雅, 侯怡君, 范天华, 齐琨, 王宝秀, 王华平. 纳米纤维基单向导湿抗菌敷料的制备及其性能[J]. 纺织学报, 2022, 43(06): 49-56.
[6] 陈鹏, 廖世豪, 沈兰萍, 王瑄, 王鹏. 聚乳酸/聚酮共混纤维分散染料染色性能[J]. 纺织学报, 2022, 43(05): 12-17.
[7] 李龙龙, 魏朋, 吴萃霞, 闫金飞, 娄贺娟, 张一风, 夏于旻, 王燕萍, 王依民. 基于对羟基苯丙酸的生物基液晶共聚酯纤维的合成与性能[J]. 纺织学报, 2022, 43(01): 9-14.
[8] 何聚, 刘晓辉, 苏晓伟, 林生根, 任元林. 星型无卤阻燃剂改性粘胶纤维的制备及其性能[J]. 纺织学报, 2021, 42(10): 34-40.
[9] 戴沈华, 翁良, 李冰艳, 张建平, 杨旭红. 负载纳米ZnO的聚氨酯/聚酯纤维发泡复合绵的制备及其性能[J]. 纺织学报, 2021, 42(08): 96-101.
[10] 刘可, 陈爽, 肖茹. 磷杂菲基共聚协效阻燃聚酰胺6纤维的制备及其性能[J]. 纺织学报, 2021, 42(07): 11-18.
[11] 徐凯, 田星, 曹英, 何雅琦, 夏延致, 全凤玉. 阻燃涤纶/海藻酸钙纤维复合材料的制备及其性能[J]. 纺织学报, 2021, 42(07): 19-24.
[12] 顾伟文, 王文庆, 魏丽菲, 孙晨颖, 郝聃, 魏建斐, 王锐. 碳点对阻燃聚对苯二甲酸乙二醇酯性能的影响[J]. 纺织学报, 2021, 42(07): 1-10.
[13] 赵永芳, 钱建华, 孙丽颖, 彭慧敏, 梅敏. 银纳米线改性棉织物的制备及其性能[J]. 纺织学报, 2021, 42(05): 115-121.
[14] 王春红, 杨璐, 胡敏, 王晓云, 王利剑. 乌拉草提取液中木犀草素含量的测定及其抗菌性能[J]. 纺织学报, 2021, 42(04): 114-120.
[15] 孟灵灵, 魏取福, 严忠杰, 仲珍珍, 王小慧, 沈佳宇, 陈洪炜. 磁控溅射Ag/ZnO纳米薄膜涤纶织物的制备及其性能[J]. 纺织学报, 2021, 42(03): 143-148.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!