纺织学报 ›› 2022, Vol. 43 ›› Issue (05): 92-96.doi: 10.13475/j.fzxb.20210700805

• 纺织工程 • 上一篇    下一篇

回潮率对石英纤维纱织造前后力学性能的影响

余鹏举1, 王黎黎2, 张文奇3, 刘洋1, 李文斌1()   

  1. 1.武汉纺织大学 省部共建纺织新材料与先进加工技术国家重点实验室, 湖北 武汉 430200
    2.湖北三江船艇科技有限公司, 湖北 孝感 432000
    3.湖北三江航天红阳机电有限公司, 湖北 孝感 432000
  • 收稿日期:2021-07-01 修回日期:2021-12-03 出版日期:2022-05-15 发布日期:2022-05-30
  • 通讯作者: 李文斌
  • 作者简介:余鹏举(1997—),男,硕士生。主要研究方向为纺织品测试仪器的研发。
  • 基金资助:
    国家重点研发计划项目(2017YFB0309100)

Effect of moisture regain on strength of quartz yarns before and after weaving

YU Pengju1, WANG Lili2, ZHANG Wenqi3, LIU Yang1, LI Wenbin1()   

  1. 1. State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan, Hubei 430200, China
    2. Hubei Sanjiang Boats Science & Technology Co., Ltd., Xiaogan, Hubei 432000, China
    3. Hubei Sanjiang Aerospace Hongyang Electromechanical Co., Ltd., Xiaogan, Hubei 432000, China
  • Received:2021-07-01 Revised:2021-12-03 Published:2022-05-15 Online:2022-05-30
  • Contact: LI Wenbin

摘要:

为研究导致石英纤维纱使用过程中强度下降的主要因素,对石英纤维纵、横截面及形貌进行表征,测试不同回潮率、不同线密度石英纤维纱织造前后拉伸断裂强度,分析织造过程中整经、开口、打纬等对其力学性能的影响,并探究浸润剂对石英纤维纱力学性能的影响。结果表明:石英纤维纱的拉伸断裂强度随回潮率增加而显著下降,其中95 tex石英纤维纱当回潮率为100%时比0%时拉伸强度降幅最大可达41%;95 tex石英纤维纱在1.0%回潮率织造后,其纤维拉伸强度下降高达60.94%;添加浸润剂对纤维纱强度有明显增强效果,390 tex石英纤维纱添加体积分数为100%浸润剂时,纱线强度增加17%;二氧化硅吸湿及浸润剂吸湿是导致石英纤维纱强度下降的主要原因。

关键词: 石英纤维纱, 回潮率, 断裂强度, 织造, 浸润剂

Abstract:

In order to study the factors affecting the strength of quartz yarns, the cross-sectional morphology of quartz fiber was characterized, the tensile properties of quartz yarns with different moisture regains and linear densities before and after weaving were tested, and the effects of warping, shedding as well as beat-up on the mechanical properties of quartz yarns were also investigated. The influence of the sizing agent on the mechanical properties of the quartz fiber was also explored. The results show that the tensile strength of quartz yarn significantly decreases with the increase of moisture regain. When the moisture regain of 95 tex quartz fiber yarn is 100%, the tensile strength decreases by 41% compared with 0%. The decrease of tensile strength of 95 tex quartz fabric that was woven under 1.0% moisture regain is as high as 60.94%. The addition of sizing agent can enhance the quartz fiber strength. When the 390 tex quartz fiber yarn is added with 100% sizing agent, the yarn strength increases by 17%. The hydrolyzing of silica and the hygroscopicity of wetting agent are the main reasons for the decrease of the strength of quartz fiber.

Key words: quartz fiber yarns, moisture regain, strength, weaving, sizing agent

中图分类号: 

  • TS102.4

图1

石英纤维微观形态"

图2

回潮率对断裂强度的影响"

图3

回潮率对断裂应变的影响"

图4

390 tex石英纤维纱织造损伤(×180)"

表1

石英纤维纱织造过程中经纱的损伤"

线密度/tex 回潮率/% 断裂强度损失率/%
经纱1 经纱2
95 0.8 22.97 39.19
0.9 11.11 39.68
1.0 12.50 60.94
195 0.5 15.73 24.72
0.6 10.81 48.65
2.7 13.51 52.70
390 1.0 6.59 42.86
1.7 9.41 52.94
5.3 9.30 65.12

图5

浸润剂对390 tex石英纤维纱力学性能的影响"

[1] 李刚, 欧书方, 赵敏健. 石英玻璃纤维的性能和用途[J]. 玻璃纤维, 2007,(4): 9-13.
LI Gang, OU Shufang, ZHAO Minjian. Properties and uses of quartz glass fiber[J]. Fiber Glass, 2007, (4): 9-13.
[2] 高涵. 石英纤维增强复合材料的隔热性能研究[D]. 天津: 天津工业大学, 2019: 1-14.
GAO Han. Thermal insulation properties of quartz fiber reinforced composites[D]. Tianjin: Tiangong University, 2019: 1-14.
[3] 王冠, 高堂铃, 付刚, 等. 石英纤维布的界面处理对氰酸酯基胶膜性能的影响[J]. 化学与粘合, 2018, 40(3): 173-176.
WANG Guan, GAO Tangling, FU Gang, et al. Study on the effect of interface treatment of quartz fabric on the performance of cyanate ester based adhesive film[J]. Chemistry and Adhesion, 2018, 40(3): 173-176.
[4] 张春燕. 天线罩用针刺复合织物研制[D]. 天津: 天津工业大学, 2017: 47-53.
ZHANG Chunyan. Preparation of needled composite fabric for radome[D]. Tianjin: Tiangong University, 2017: 47-53.
[5] 李鹏, 杜瑞奎, 刘亚青, 等. 环氧树脂/石英纤维透波复合材料制备[J]. 工程塑料应用, 2021, 49(2): 29-33.
LI Peng, DU Ruikui, LIU Yaqing, et al. Preparation of epoxy resin/quartz fiber wave-transparent composites[J]. Engineering Plastics Application, 2021, 49(2): 29-33.
[6] 孙绯. 单层高厚石英织物的设计及其可成型性研究[D]. 天津: 天津工业大学, 2015: 24-39.
SUN Fei. Study on design and formability of single layer high thickness quartz fabric[D]. Tianjin: Tiangong University, 2015: 24-39.
[7] 夏新. 石英玻璃纤维用有机硅型浸润剂及其制备方法:201610510764.4[P]. 2016-12-07.
XIA Xin. Silicone type infiltrating agent for quartz glass fiber and preparation method there of: 201610510764.4[P]. 2016-12-07.
[8] 宋来福. 石英纤维表面处理及2.5D机织复合材料性能研究[D]. 天津: 天津工业大学, 2018: 3-14.
SONG Laifu. Study on surface treatment of quartz fiber and properties of 2.5D woven composites[D]. Tianjin: Tiangong University, 2018: 3-14.
[9] 王佩艳, 王富生, 岳珠峰. 石英纤维布氰酸酯树脂基复合材料的环境试验性能研究[J]. 实验力学, 2010, 25(3): 325-330.
WANG Peiyan, WANG Fusheng, YUE Zhufeng. Experimental study of quartz fibre cyanate resin matrix gfrp performance in variant environment[J]. Journal of Experimental Mechanics, 2010, 25(3): 325-330.
doi: 10.1007/BF02321330
[10] 刘钧, 边佳燕, 鲍铮, 等. 吸湿环境对石英纤维增强环氧树脂面板/PMI泡沫夹层结构复合材料吸湿行为的影响[J]. 国防科技大学学报, 2019, 41(5): 193-198.
LIU Jun, BIAN Jiayan, BAO Zheng, et al. Effect of environment on moisture absorption behavior of quartz fiber reinforced epoxy panel/PMI core sandwich composites[J]. Journal of National University of Defense Technology, 2019, 41(5): 193-198.
[11] 张亚娟, 成竹, 刘海燕. 环境因素对石英纤维增强氰酸酯树脂基复合材料力学性能的影响[J]. 工程塑料应用, 2013(11): 84-87.
ZHANG Yajuan, CHENG Zhu, LIU Haiyan. Effect of environment factors on mechanical properties of quartz fiber reinforced cyanate ester composites[J]. Engineering Plastics Application, 2013(11): 84-87.
[12] 李永宏, 廉芬, 马紫微, 等. 石英玻璃界面处水的异常冲击相变现象[J]. 运城学院学报, 2014, 32(5): 36-39.
LI Yonghong, LIAN Fen, MA Ziwei, et al. The abnormal phase transition of water at quartz/water interfaces under shock compression process[J]. Journal of Yuncheng University, 2014, 32(5): 36-39.
[13] 郑骏驰. 纳米二氧化硅的表面修饰及其对天然橡胶复合材料结构与性能的影响[D]. 北京: 北京化工大学, 2018: 62-75.
ZHENG Junchi. Surface modification of nano silica and its effect on the structure and properties of natural rubber composites[D]. Beijing: Beijing University of Chemical Technology, 2018: 62-75.
[14] KIM H N, LEE S K. Atomic structure and dehydration mechanism of amorphous silica: insights from 29Si and 1H solid-state MAS NMR study of SiO2 nanoparticles[J]. Geochimica Et Cosmochimica Acta, 2013, 120: 39-64.
doi: 10.1016/j.gca.2013.05.047
[1] 沈春娅, 雷钧杰, 汝欣, 彭来湖, 胡旭东. 基于改进型NSGAII的织造车间多目标大规模动态调度[J]. 纺织学报, 2022, 43(04): 74-83.
[2] 王晨玫孜, 王玲, 张庆乐, 王颖, 夏鑫. 复合水凝胶非织造布保鲜材料的制备及其性能[J]. 纺织学报, 2022, 43(03): 132-138.
[3] 禹凡, 郑涛, 汤涛, 金梦婷, 朱海霖, 于斌. 基于金属有机框架化合物的非织造复合材料制备及其对废水中六价铬的去除[J]. 纺织学报, 2022, 43(03): 139-145.
[4] 成悦, 胡颖捷, 付译鋆, 李大伟, 张伟. 抗菌止血非织造弹性绷带的制备及其性能[J]. 纺织学报, 2022, 43(03): 31-37.
[5] 郭敏, 王静安, 郭明瑞, 高卫东. 基于毛羽图像检测的浆纱抗起毛性能评价[J]. 纺织学报, 2022, 43(03): 78-82.
[6] 赵家明, 孙辉, 于斌, 杨潇东. CuO/聚丙烯/乙烯-辛烯共聚物复合熔喷非织造材料的制备及其吸油性能[J]. 纺织学报, 2022, 43(02): 89-97.
[7] 朵永超, 钱晓明, 郭寻, 高龙飞, 白赫, 赵宝宝. 中空桔瓣型高收缩聚酯/聚酰胺6超细纤维非织造布的制备及其性能[J]. 纺织学报, 2022, 43(02): 98-104.
[8] 丁倩, 邓炳耀, 李昊轩. 全纤维光驱动界面蒸发系统在海水淡化工程中的应用研究进展[J]. 纺织学报, 2022, 43(01): 36-42.
[9] 孙婷, 张如全, 唐子杰, 涂虎, 胡敏. 全棉水刺非织造布的低碳节能冷堆处理工艺[J]. 纺织学报, 2022, 43(01): 89-95.
[10] 朱斐超, 张宇静, 张强, 叶翔宇, 张恒, 汪伦合, 黄瑞杰, 刘国金, 于斌. 聚乳酸基生物可降解熔喷非织造材料的研究进展与展望[J]. 纺织学报, 2022, 43(01): 49-57.
[11] 郭敏, 高卫东, 朱博, 刘建立, 郭明瑞. 模拟织造状态下的浆纱耐磨性能测试方法[J]. 纺织学报, 2021, 42(11): 46-50.
[12] 柳洋, 夏兆鹏, 王亮, 范杰, 曾强, 刘雍. 医用防护服的发展现状及趋势[J]. 纺织学报, 2021, 42(09): 195-202.
[13] 高猛, 王增元, 漏琦伟, 陈钢进. 电晕驻极熔喷聚丙烯驻极体非织造布的电荷捕获特性[J]. 纺织学报, 2021, 42(09): 52-58.
[14] 何俊燕, 李明福, 连文伟, 黄涛, 张劲. 菠萝叶纤维的超声波辅助化学脱胶工艺[J]. 纺织学报, 2021, 42(09): 83-89.
[15] 戴沈华, 翁良, 李冰艳, 张建平, 杨旭红. 负载纳米ZnO的聚氨酯/聚酯纤维发泡复合绵的制备及其性能[J]. 纺织学报, 2021, 42(08): 96-101.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!