纺织学报 ›› 2023, Vol. 44 ›› Issue (03): 210-220.doi: 10.13475/j.fzxb.20210705311
WANG Shudong1,2,3(), MA Qian1, WANG Ke1, GU Yuanhui1
摘要:
为进一步推动3D生物打印技术在组织工程支架领域的应用,从当前3D生物打印方法的优劣及相关材料的固化成形机制出发,详细综述了国内外3D生物打印制备组织工程支架的研究进展。针对3D生物打印技术,主要介绍了喷墨、挤出、激光辅助和立体光刻等技术的原理、过程和优缺点;针对3D生物打印材料,主要介绍了聚合物和生物陶瓷等材料的特性、固化成形机制和适应范围;针对3D生物打印应用,主要介绍了3D生物打印在血管、骨、耳、心脏等功能性组织构建中的最新研究进展,指出生物墨水的开发及临床应用是其未来的发展方向。为进一步推动组织工程用3D生物打印技术的发展提供理论与实践参考。
中图分类号:
[1] |
MARTIN-PIEDRA M A, SANTISTEBAN-ESPEJO A, MORAL-MUNOZ J A, et al. An evolutive and scientometric research on tissue engineering reviews[J]. Tissue Engineering Part A, 2020, 26(9/10): 569-577.
doi: 10.1089/ten.tea.2019.0247 |
[2] |
ZHAO P, GU H, MI H. Fabrication of scaffolds in tissue engineering: a review[J]. Frontiers of Mechanical Engineering, 2018, 13: 107-119.
doi: 10.1007/s11465-018-0496-8 |
[3] |
HAIDER A, HAIDER S, KUMMARA M R, et al. Advances in the scaffolds fabrication techniques using biocompatible polymers and their biomedical application: a technical and statistical review[J]. Journal of Saudi Chemical Society, 2020, 24(2): 186-215.
doi: 10.1016/j.jscs.2020.01.002 |
[4] | 贾琳, 陈莉娜, 张海霞, 等. 聚氨酯/胶原蛋白复合纳米纤维支架的性能[J]. 纺织学报, 2016, 37(8): 1-6. |
JIA Lin, CHEN Lina, ZHANG Haixia, et al. Performance of composite polyurethane/collagen nanofiber scaffolds[J]. Journal of Textile Research, 2016, 37(8): 1-6.
doi: 10.1177/004051756703700101 |
|
[5] |
MANDRYCKY C, WANG Z, KIM K, et al. 3D bioprinting for engineering complex tissues[J]. Biotechnology Advances, 2016, 34(4): 422-434.
doi: S0734-9750(15)30066-5 pmid: 26724184 |
[6] |
MURPHY S V, COPPI P De, ATALA A. Opportunities and challenges of translational 3D bioprinting[J]. Nature Biomedical Engineering, 2020, 4: 370-380.
doi: 10.1038/s41551-019-0471-7 pmid: 31695178 |
[7] |
MIRONOV V, REIS N, DERBY B. Review: bioprinting: a beginning[J]. Tissue Engineering, 2006, 12(4): 631-634.
pmid: 16674278 |
[8] | KUMAR K, DAVIM J P. Design, development, and optimization of bio-mechatronic engineering products[M]. Hershey: IGI Global, 2019: 78-99. |
[9] |
BEHESHTIZADEH N, LOTFIBAKHSHAIESH N, PAZHOUHNIA Z, et al. A review of 3D bio-printing for bone and skin tissue: a commercial approach[J]. Journal of Materials Science, 2020, 55: 3729-3749.
doi: 10.1007/s10853-019-04259-0 |
[10] | CUI X, BOLAND T, LIMA D, et al. Thermal inkjet printing in tissue engineering and regenerative medicine[J]. Recent Patents on Drug Delivery & Formulation, 2012, 6(2): 149-155. |
[11] |
GUDAPATI H, DEY M, OZBOLAT I. A comprehensive review on droplet-based bioprinting: past, present and future[J]. Biomaterials, 2016, 102: 20-42.
doi: 10.1016/j.biomaterials.2016.06.012 pmid: 27318933 |
[12] |
LI X, LIU B, PEI B, et al. Inkjet bioprinting of biomaterials[J]. Chemical Reviews, 2020, 120: 10793-10833.
doi: 10.1021/acs.chemrev.0c00008 |
[13] |
RAMESH S, HARRYSSON O L A, RAP P K, et al. Extrusion bioprinting: recent progress, challenges, and future opportunities[J]. Bioprinting, 2021.DOI: 10.1016/j.bprint.2020.e00116.
doi: 10.1016/j.bprint.2020.e00116 |
[14] |
HEINRICH MA, LIU W, JIMENEZ A, et al. 3D Bioprinting: from benches to translational applica-tions[J]. Small, 2019. DOI: 10.1002/smll.201805510.
doi: 10.1002/smll.201805510 |
[15] |
ZHENG Z, WU J, LIU M, et al. 3D Bioprinting of self-standing silk-based bioink[J]. Advanced Healthcare Materials, 2018.DOI: 10.1002/adhm.201701026.
doi: 10.1002/adhm.201701026 |
[16] |
IRANMANESH P, GOWDINI M, KHADEMI A, et al. 3D Bioprinting of three-dimensional scaffold based on alginate-gelatin as soft and hard tissue regeneration[J]. Journal of Materials Research and Technology, 2021, 14: 2853-2864.
doi: 10.1016/j.jmrt.2021.08.069 |
[17] |
DEMIRTAS T T, IRMAK G, GÜMÜSDERELIOG Lu M. A bioprintable form of chitosan hydrogel for bone tissue engineering[J]. Biofabrication, 2017. DOI: 10.1088/1758-5090/aa7b1d.
doi: 10.1088/1758-5090/aa7b1d |
[18] | BIAZAR E, NAJAFI S M, HEIDARI K S, et al. 3D bio-printing technology for body tissues and organs regeneration[J]. Journal of Medical Engineering & Technology, 2018, 42(3): 187-202. |
[19] |
DALY A C, PRENDERGAST M E, HUGHES A J, et al. Bioprinting for the biologist[J]. Cell, 2021, 184: 18-32.
doi: 10.1016/j.cell.2020.12.002 pmid: 33417859 |
[20] | 毛宏理, 顾忠伟. 生物3D打印高分子材料发展现状与趋势[J]. 中国材料进展, 2018, 37(12): 949-969. |
MAO Hongli, GU Zhongwei. Polymers in 3D bioprinting: progress and challenges[J]. Materials China, 2018, 37(12): 949-969. | |
[21] |
SALAH M, TAYEBI L, MOHARAMZADEH K, et al. Three-dimensional bio-printing and bone tissue engineering: technical innovations and potential applications in maxillofacial reconstructive surgery[J]. Maxillofacial Plastic and Reconstructive Surgery, 2020. DOI: 10.1186/s40902-020-00263-6.
doi: 10.1186/s40902-020-00263-6 |
[22] |
YING G, JIANG N, YU C, et al. Three-dimensional bioprinting of gelatin methacryloyl (GelMA)[J]. Bio-design and Manufacturing, 2018, 1: 215-224.
doi: 10.1007/s42242-018-0028-8 |
[23] | 王曙东, 马倩, 王可, 等. 蚕丝蛋白/明胶复合水凝胶的结构与生物相容性[J]. 纺织学报, 2020, 41(11): 41-47. |
WANG Shudong, MA Qian, WANG Ke, et al. Structure and biocompatibility of silk fibroin/gelatin blended hydrogels[J]. Journal of Textile Research, 2020, 41(11): 41-47. | |
[24] |
KIM S H, YEON Y K, LEE J M, et al. Precisely printable and biocompatible silk fibroin bioink for digital light processing 3D printing[J]. Nature Communications, 2018. DOI: 10.1038/s41467-018-03759-y.
doi: 10.1038/s41467-018-03759-y |
[25] |
OSIDAK E O, KOZHUKHOV V I, OSIDAK M S, et al. Collagen as bioink for bioprinting: a comprehensive review[J]. Journal of Bioprinting, 2020.DOI: 10.18063/ijb.v6i3.270.
doi: 10.18063/ijb.v6i3.270 |
[26] |
LEE A, HUDSON A R, SHIWARSKI D J, et al. 3D bioprinting of collagen to rebuild components of the human heart[J]. Science, 2019, 365(6452): 482-487.
doi: 10.1126/science.aav9051 pmid: 31371612 |
[27] |
RASTOGI P, KANDASUBRAMANIAN B. Review of alginate-based hydrogel bioprinting for application in tissue engineering[J]. Biofabrication, 2019.DOI: 10.1088/1758-5090/ab331e.
doi: 10.1088/1758-5090/ab331e |
[28] |
TAGHIZADEH M, TAGHIZADEH A, YAZDI M K, et al. Chitosan-based inks for 3D printing and bio-printing[J]. Green Chemistry, 2022, 24: 62-101.
doi: 10.1039/D1GC01799C |
[29] |
FAN R, PIOU M, DARLING E, et al. Bio-printing cell-laden matrigel-agarose constructs[J]. Journal of Biomaterials Applications, 2016, 31(5): 684-692.
pmid: 27638155 |
[30] |
NADERNEZHAD A, CALISKAN O S, TOPUZ F, et al. Nanocomposite bioinks based on agarose and 2D nanosilicates with tunable flow properties and bioactivity for 3D bioprinting[J]. ACS Applied Bio Materials, 2019, 2(2): 796-806.
doi: 10.1021/acsabm.8b00665 pmid: 35016284 |
[31] |
NOH I, KIM N, TRAN H N, et al. 3D printable hyaluronic acid-based hydrogel for its potential application as a bioink in tissue engineering[J]. Biomaterials Research, 2019.DOI: 10.1186/s40824-018-0152-8.
doi: 10.1186/s40824-018-0152-8 |
[32] |
KIYOTAKE E A, DOUGLAS A W, THOMAS E E, et al. Development and quantitative characterization of the precursor rheology of hyaluronic acid hydrogels for bioprinting[J]. Acta Biomaterialia, 2019, 95: 176-187.
doi: S1742-7061(19)30061-3 pmid: 30669003 |
[33] |
WANG K, HAZRA R S, MA Q, et al. Multifunctional silk fibroin/PVA bio-nanocomposite films containing TEMPO-oxidized bacterial cellulose nanofibers and silver nanoparticles[J]. Cellulose, 2022, 29: 1647-1666.
doi: 10.1007/s10570-021-04369-6 |
[34] |
MA Q, MOHAWAK D, JAHANI B, et al. UV-curable cellulose nanofiber-reinforced soy protein resins for 3D printing and conventional molding[J]. ACS Applied Polymer Materials, 2020, 2(11): 4666-4676.
doi: 10.1021/acsapm.0c00717 |
[35] |
PIRAS C C, FERNÁNDEZ-PRIETO S. Nanocellulosic materials as bioinks for 3D bioprinting[J]. Biomaterials Science, 2017, 5: 1988-1992.
doi: 10.1039/c7bm00510e pmid: 28829453 |
[36] |
BANDYOPADHYAY A, MANDAL B B, BHARDWAJ N. 3D bioprinting of photo-crosslinkable silk methacrylate (SilMA)-polyethylene glycol diacry-late (PEGDA) bioink for cartilage tissue engineer-ing[J]. Journal of Biomedical Materials Research Part A, 2021, 110(4): 884-988.
doi: 10.1002/jbm.a.v110.4 |
[37] |
ZHANG W, YE W, YAN Y. Advances in photocrosslinkable materials for 3D bioprinting[J]. Advanced Engineering Materials, 2021. DOI: 10.1002/adem.202100663.
doi: 10.1002/adem.202100663 |
[38] |
YING G L, JIANG N, MAHARJAN, et al. Aqueous two-phase emulsion bioink-enabled 3D bioprinting of porous hydrogels[J]. Advanced Materials, 2018, 30(50): 1805460.
doi: 10.1002/adma.v30.50 |
[39] |
SHAO L, HOU R, ZHU Y, et al. Pre-shear bioprinting of highly oriented porous hydrogel microfibers to construct anisotropic tissues[J]. Biomaterials Science, 2021, 9: 6763-6771.
doi: 10.1039/D1BM00695A |
[40] |
LUO Y, LUO G, GELINSKY M, et al. 3D bioprinting scaffold using alginate/polyvinyl alcohol bioinks[J]. Materials Letters, 2017, 189: 295-298.
doi: 10.1016/j.matlet.2016.12.009 |
[41] |
YU F, HAN X, ZHANG K, et al. Evaluation of a polyvinyl alcohol-alginate based hydrogel for precise 3D bioprinting[J]. Journal of Biomedical Materials Research Part A, 2018, 106(11): 2944-2954.
doi: 10.1002/jbm.a.36483 pmid: 30329209 |
[42] | NARAYANAN L K, HUEBNER P, FISHER M B, et al. 3D-bioprinting of polylactic acid (PLA) nanofiber: alginate hydrogel bioink containing human adipose-derived stem cells[J]. ACS Biomaterials Science & Engineering, 2016, 2(10): 1732-1742. |
[43] |
ZAMANI Y, MOHAMMADI J, AMOABEDINY G, et al. Bioprinting of alginate-encapsulated pre-osteoblasts in PLGA/β-TCP scaffolds enhances cell retention but impairs osteogenic differentiation compared to cell seeding after 3D-printing[J]. Regenerative Engineering and Translational Medicine, 2021, 7: 485-493.
doi: 10.1007/s40883-020-00163-1 |
[44] |
BORKAR T, GOENKA V, JAISWAL A K. Application of poly-ε-caprolactone in extrusion-based bioprinting[J]. Bioprinting, 2021.DOI: 10.1016/j.bprint.2020.e00111.
doi: 10.1016/j.bprint.2020.e00111 |
[45] | CHOI A H, BEN-NISSAN B. Innovative bioceramics in translational medicine II[M]. Singapore: Springer, 2022: 15-33. |
[46] |
FAZAL F, RAGHAV S, CALLANAN A, et al. Recent advancements in the bioprinting of vascular grafts[J]. Biofabrication, 2021.DOI: 10.1088/1758-5090/ac0963.
doi: 10.1088/1758-5090/ac0963 |
[47] | 王曙东. 一种丝蛋白细胞复合血管支架及其制备方法: 201510666594.4[P]. 2018-07-03. |
WANG Shudong. Fabrication of a silk fibroin/cell composite vascular scaffold: 201510666594.4[P]. 2018-07-03. | |
[48] |
CHRISTENSEN K, XU C, CHAI W, et al. Freeform inkjet printing of cellular structures with bifurca-tions[J]. Biotechnology and Bioengineering, 2015, 112(5): 1047-1055.
doi: 10.1002/bit.v112.5 |
[49] |
WADNAP S, KRISHNAMOORTHY S, ZHANG Z, et al. Biofabrication of 3D cell-encapsulated tubular constructs using dynamic optical projection stereolithography[J]. Journal of Materials Science: Materials in Medicine, 2019.DOI: 10.1007/s10856-019-6239-5.
doi: 10.1007/s10856-019-6239-5 |
[50] | 张一帆, 徐铭恩, 王玲, 等. 利用同轴3D打印技术构建促内皮细胞生长类血管组织工程支架[J]. 中国生物医学工程学报, 2020, 39(2): 206-214. |
ZHANG Yifan, XU Mingen, WANG Ling, et al. Coaxial 3D bioprinting of vascular tissue engineering scaffolds for promoting endothelial cell growth[J]. Chinese Journal of Biomedical Engineering, 2020, 39(2): 206-214. | |
[51] |
WANG K, MA Q, ZHANG Y M, et al. Preparation of bacterial cellulose/silk fibroin doublenetwork hydrogel with high mechanical strength and biocompatibility for artificial cartilage[J]. Cellulose, 2020, 27: 1845-1852.
doi: 10.1007/s10570-019-02869-0 |
[52] | 马倩, 王可, 王曙东, 等. OBC/SF复合软骨支架的制备及性能[J]. 丝绸, 2017, 54(10): 18-23. |
MA Qian, WANG Ke, WANG Shudong, et al. Preparation and performance of oxidized bacterial cellulose /silk fibroin composite cartilage scaffold[J]. Journal of Silk, 2017, 54(10): 18-23. | |
[53] |
BENDTSEN S T, QUINNELL S P, WEI M. Development of a novel alginate-polyvinyl alcohol-hydroxyapatite hydrogel for 3D bioprinting bone tissue engineered scaffolds[J]. Journal of Biomedical Materials Research Part A, 2017, 105(5): 1457-1468.
doi: 10.1002/jbm.a.36036 pmid: 28187519 |
[54] |
BELLA C D, DUCHI S, O'CONNELL C D, et al. In situ handheld three-dimensional bioprinting for cartilage regeneration[J]. Journal of Tissue Engineering and Regenerative Medicine, 2017, 12(3): 611-621.
doi: 10.1002/term.v12.3 |
[55] | CHIMENE D, MILER L, CROSS L M, et al. Nanoengineered osteoinductive bioink for 3D bioprinting bone tissue[J]. ACS Applied Materials & Interfaces, 2020, 12(14): 15976-15988. |
[56] |
KANG H W, LEE S J, KO I K, et al. A 3D bioprinting system to produce human-scale tissue constructs with structural integrity[J]. Nature Biotechnology, 2016, 34: 312-319.
doi: 10.1038/nbt.3413 |
[57] |
BUYUKSUNGUR S, HASIRCI V, HASIRCI N. 3D printed hybrid bone constructs of PCL and dental pulp stem cells loaded GelMA[J]. Journal of Biomedical Materials Research Part A, 2021, 109(12): 2425-2437.
doi: 10.1002/jbm.a.37235 pmid: 34033241 |
[58] |
MANNOR M S, JIANG Z W, JAMES T, et al. 3D printed bionic ears[J]. Nano Letters, 2013, 13(6): 2634-2639.
doi: 10.1021/nl4007744 pmid: 23635097 |
[59] |
PATI F, SHIM J H, LEE J S, et al. 3D printing of cell-laden constructs for heterogeneous tissue regeneration[J]. Manufacturing Letters, 2013, 1(1): 49-53.
doi: 10.1016/j.mfglet.2013.09.004 |
[60] |
MARKSTEDT K, MANTAS A, TOURNIER I, et al. 3D bioprinting human chondrocytes with nanocellulose-alginate bioink for cartilage tissue engineering applications[J]. Biomacromolecules, 2015, 16(5): 1489-1496.
doi: 10.1021/acs.biomac.5b00188 pmid: 25806996 |
[61] |
ROCHE C D, BREEETON R J L, ASHTON A W, et al. Current challenges in three-dimensional bioprinting hearttissues for cardiac surgery[J]. European Journal of Cardio-Thoracic Surgery, 2020, 58: 500-510.
doi: 10.1093/ejcts/ezaa093 |
[62] |
GAETANI R, FEYEN D A M, VERHAGE V, et al. Epicardial application of cardiac progenitor cells in a 3D-printed gelatin/hyaluronic acid patch preserves cardiac function after myocardial infarction[J]. Biomaterials, 2015, 61: 339-348.
doi: 10.1016/j.biomaterials.2015.05.005 pmid: 26043062 |
[63] |
IZADIFAR M, CHAPMAN D, BABYN P, et al. UV-assisted 3D bioprinting of nanoreinforced hybrid cardiac patch for myocardial tissue engineering[J]. Tissue Engineering Part C: Methods, 2018, 24(2): 74-88.
doi: 10.1089/ten.tec.2017.0346 |
[64] |
NOOR N, SHAPIEA A, EDRI R, et al. 3D printing of personalized thick and perfusable cardiac patches and hearts[J]. Advanced Science, 2019.DOI: 10.1002/advs.201900344.
doi: 10.1002/advs.201900344 |
[65] | MIRDAMADI E, TASHMAN J W, SHIWARSKI D J, et al. FRESH 3D bioprinting a full-size model of the human heart[J]. ACS Biomaterials Science & Engineering, 2020, 6(11): 6453-6459. |
[66] |
CADENA M, NING L, KING A, et al. 3D bioprinting of neural tissues[J]. Advanced Healthcare Materials, 2021.DOI: 10.1002/adhm.202001600.
doi: 10.1002/adhm.202001600 |
[67] |
HEO D N, LEE S J, TIMSINA R, et al. Development of 3D printable conductive hydrogel with crystallized PEDOT:PSS for neural tissue engineering[J]. Materials Science and Engineering: C, 2019, 99: 582-590.
doi: 10.1016/j.msec.2019.02.008 |
[68] |
ZHAO Y, LIANG Y, DING S, et al. Application of conductive PPy/SF composite scaffold and electrical stimulation for neural tissue engineering[J]. Biomaterials, 2020.DOI: 10.1016/j.biomaterials.2020.120164.
doi: 10.1016/j.biomaterials.2020.120164 |
[69] |
LIU X, HAO M, CHEN Z, et al. 3D bioprinted neural tissue constructs for spinal cord injury repair[J]. Biomaterials, 2021. DOI: 10.1016/j.biomaterials.2021.120771.
doi: 10.1016/j.biomaterials.2021.120771 |
[70] |
KHOSHNOOD N, ZAMANIAN A. A comprehensive review on scaffold-free bioinks for bioprinting[J]. Bioprinting, 2020.DOI: 10.1016/j.bprint.2020.e00088.
doi: 10.1016/j.bprint.2020.e00088 |
[1] | 刘蛟, 陈韶娟, 吴韶华. 丝素蛋白/聚左旋乳酸纳米纤维纱线肌腱补片的制备及其性能[J]. 纺织学报, 2022, 43(08): 60-66. |
[2] | 李艾元, 施心雨, 岳万福, 游卫云. 丝素蛋白水凝胶支架的制备及其性能[J]. 纺织学报, 2022, 43(06): 44-48. |
[3] | 乔燕莎, 毛迎, 徐丹瑶, 李彦, 李绍杰, 王璐, 唐健雄. 用于应对疝修补术后并发症的经编补片研究进展[J]. 纺织学报, 2022, 43(03): 1-7. |
[4] | 李田华, 李晶晶, 张克勤, 赵荟菁, 孟凯. 螺旋型人工血管内的血流动力学数值模拟[J]. 纺织学报, 2022, 43(03): 17-23. |
[5] | 方镁淇, 王茜, 李彦, 李超婧, 黎昊, 王璐. 女性压力性尿失禁吊带的设计及其体外力学性能评价[J]. 纺织学报, 2022, 43(03): 38-43. |
[6] | 吴洋, 刘方恬, 曹孟杰, 崔金海, 邓红兵. 生物质纤维医用敷料研究进展[J]. 纺织学报, 2022, 43(03): 8-16. |
[7] | 卢俊, 管晓宁, 林婧, 劳继红, 王富军, 李彦, 王璐. 人工韧带疲劳测试装置设计及其耐疲劳性能评价[J]. 纺织学报, 2021, 42(11): 71-76. |
[8] | 孙钰晟, 左保齐. 高分子聚合物硬骨缺损修复材料研究进展[J]. 纺织学报, 2021, 42(08): 175-184. |
[9] | 卢俊, 王富军, 劳继红, 王璐, 林婧. 复合载荷下不同结构编织人工韧带的有限元分析[J]. 纺织学报, 2021, 42(08): 84-89. |
[10] | 王航, 王冰心, 宁新, 曲丽君, 田明伟. 喷墨打印导电墨水及其智能电子纺织品研究进展[J]. 纺织学报, 2021, 42(06): 189-197. |
[11] | 苏梦茹, 邹婷, 陈颀超, 李超婧, 王富军, 王璐. 医用倒刺缝合线的研究进展[J]. 纺织学报, 2021, 42(05): 178-184. |
[12] | 张蓓蕾, 沈明武, 史向阳. 静电纺短纤维的制备及其生物医学应用[J]. 纺织学报, 2021, 42(05): 1-8. |
[13] | 蒋君莹, 高晶, 张剑. 吻合口加固修补组件背衬面料的选择与防漏性能评价[J]. 纺织学报, 2021, 42(04): 69-73. |
[14] | 殷聚辉, 郭静, 王艳, 曹政, 管福成, 刘树兴. 基于海藻酸钠/磷虾蛋白的支架材料制备及其性能[J]. 纺织学报, 2021, 42(02): 53-59. |
[15] | 杨刚, 李海迪, 乔燕莎, 李彦, 王璐, 何红兵. 聚乳酸-己内酯/纤维蛋白原纳米纤维基补片的制备与表征[J]. 纺织学报, 2021, 42(01): 40-45. |
|