纺织学报 ›› 2022, Vol. 43 ›› Issue (02): 110-115.doi: 10.13475/j.fzxb.20210707307
周筱雅1,2, 马定海3, 胡铖烨1,2, 洪剑寒1,2,4, 刘永坤1,2, 韩潇1,2(), 闫涛4
ZHOU Xiaoya1,2, MA Dinghai3, HU Chengye1,2, HONG Jianhan1,2,4, LIU Yongkun1,2, HAN Xiao1,2(), YAN Tao4
摘要:
为制备兼具力学性能和导电性能的氨敏传感器基体材料,采用一种水浴静电纺丝法连续制备涤纶工业丝为芯,聚酰胺6纳米纤维为皮层的纳米纤维包覆纱(NCY),并采用原位聚合法对其进行导电处理,制备表面负载聚吡咯的导电纳米纤维包覆纱(NCY/PPy),借助扫描电子显微镜和傅里叶红外光谱仪对NCY和NCY/PPy进行表面形貌和化学结构分析,同时研究了NCY/PPy的导电性能、力学性能、氨敏性能。结果表明,NCY具有超高的比表面积;经导电处理后,负载的聚吡咯未堵塞纤维之间的空隙,纳米纤维包覆层仍保持多孔网状结构,当吡哜浓度为0.07 mol/L 时,NCY/PPy的电导率达7.19×10-2 S/cm;高比表面积的纳米结构导电层,有利于提高气敏传感器对氨气的敏感性。
中图分类号:
[1] |
SMITH R E, TOTTIB S, VELLIOU E, et al. Development of a novel highly conductive and flexible cotton yarn for wearable pH sensor technology[J]. Sensors and Actuators B: Chemical, 2019, 287(5): 338-345.
doi: 10.1016/j.snb.2019.01.088 |
[2] |
MALOOK K, KHAN H, SHAH M, et al. Highly selective and sensitive response of polypyrrole-MnO2 based composites towards ammonia gas[J]. Polymer Composites, 2019, 40(4): 1676-1683.
doi: 10.1002/pc.v40.4 |
[3] | KOROTCENKOV G. Metal oxides for solid-state gas sensors: what determines our choice?[J]. Materials Science and Engineering: B, 2007, 139(1): 1-23. |
[4] |
BAI H, SHI G. Gas sensors based on conducting polymers[J]. Sensors, 2007, 7(3): 267-307.
doi: 10.3390/s7030267 |
[5] |
NAVALE S, KHUSPE G, CHOUGULE M, et al. Camphor sulfonic acid doped PPy/α-Fe2O3 hybrid nanocomposites as NO2 sensors[J]. RSC Advances, 2014, 4(54): 27998-28004.
doi: 10.1039/C4RA02924K |
[6] | CUI S Q, YANG L C, WANG J, et al. Fabrication of a sensitive gas sensor based on PPy/TiO2 nanocomposites films by layer-by-layer self-assembly and its application in food storage[J]. Sensors and Acturatous B: Chemical, 2016, 233(10): 227-246. |
[7] | JAMALABADI H, VAMOSFADERANI A M, ALIZADEH N. Detection of alkylamine vapors using PPy-ZnO hybrid nanocomposite sensor array and artificial neual network[J]. Sensors and Acturatous A: Physical, 2018, 280(9): 228-237. |
[8] | NYLANDER C, ARMGARTH M, LUNDSTRON I. An ammonia detector based on a conducting polymer[J]. Analytical Chemistry, 1983, 55(9): 17203-17207. |
[9] |
PIRSA S, ALIZADEH N. Nanoporous conducting polypyrrole gas sensor coupled to a gas chromatograph for determination of aromatic hydrocarbons using dispersive liquid-liquid microextraction method[J]. IEEE Sensors Journal, 2011, 11(12): 3400-3405.
doi: 10.1109/JSEN.2011.2159970 |
[10] |
XUE P, TAO X M, TSANG H Y. In situ SEM studies on strain sensing mechanisms of PPy-coated electrically conducting fabrics[J]. Applied Surface Science, 2007, 253(7): 3387-3392.
doi: 10.1016/j.apsusc.2006.07.003 |
[11] | PAN J J, YANG M Y, LUO L, et al. Strechable and highly sensitive braded composite yarn@polydopmine@polypyrrole for wearable applications[J]. ACS Applied Materials & Interfaces, 2019, 11(7): 7338-7348. |
[12] |
VELLGUTH N, SHAMSUYEVA M, KROLL S, et al. Electrical conductivity in biocomposites via polypyrrole coating[J]. Journal of Materials Science: Materials in Electronics, 2019, 30(3): 2373-2381.
doi: 10.1007/s10854-018-0510-2 |
[13] | BAI H, ZHAO L, LU C H, et al. Composite nanofibers of conducting polymers and hydrophobic insulting polymers: Preparation and sensing applications[J]. Polymers, 2009, 50(10): 3292-3301. |
[14] | HO T A, JUN T S, KIM Y S. Materials and NH3-sensing properties of polypyrrole coated tungsten oxide nanofibers[J]. Sensors and Actruators B: Chemical, 2013, 185(8): 523-529. |
[15] |
JI S Z, LI Y, YANG M J. Gas sensing properties of a composite composed of electrospun polyu(methyl methacrylate) nanofibers and in situ polymerized polyaniline[J]. Sensors and Actuators B: Chemical, 2008, 133(2): 644-649.
doi: 10.1016/j.snb.2008.03.040 |
[16] | LIU P H, WU S H, ZHANG Y, et al. A fast response ammonia sensor based on coaxial PPy-PAN nanofiber yarn[J]. Nanomaterials, 2016, 121(6): 121-130. |
[17] |
WU S H, LIU P H, ZHANG Y, et al. Flexible and conductive nanofiber-structured single yarn sensor[J]. Sensors and Actuators B: Chemical, 2017, 252(11): 697-705.
doi: 10.1016/j.snb.2017.06.062 |
[18] | DABIRIAN F, RAVANDI S A H, HINESTROZA J P, et al. Conformal coating of yarns and wires with electrospun nanofibers[J]. Polymer Engineering & Science, 2012, 52(8): 1724-1732. |
[19] | LIU C K, HE H J, SUN R J, et al. Preparation of continuous nanofiber core-spun yarn by a novel covering method[J]. Materials & Design, 2016, 112(12): 456-461. |
[20] |
ZHOU Y M, WANG H B, HE J H, et al. Highly stretchable nanofiber-coated hybrid yarn with wavy structure fabricated by novel airflow-electrospinning method[J]. Materials Letters, 2019, 239(3): 1-4.
doi: 10.1016/j.matlet.2018.12.043 |
[21] |
ZHMAYEV E, CHO D, JOO Y L. Nanofibers from gas-assisted polymer melt electrospinning[J]. Polymer, 2010, 51(18): 4140-4144.
doi: 10.1016/j.polymer.2010.06.058 |
[22] | 王怡婷, 詹建朝, 王迎. 静电纺制备聚氨酯-Fe3O4纳米纤维包芯纱[J]. 上海纺织科技, 2018, 46(6): 41-43, 48. |
WANG Yiting, ZAN Jianchao, WANG Ying. Electrospun of polyurethane -Fe3O4 nanofiber core-spun yarn[J]. Shanghai Textile Science & Technology, 2018, 46(6): 41-43, 48. |
[1] | 邹梨花, 杨莉, 兰春桃, 阮芳涛, 徐珍珍. 层层组装氧化石墨烯/聚吡咯涂层棉织物的电磁屏蔽性能[J]. 纺织学报, 2021, 42(12): 111-118. |
[2] | 陈莹, 方浩霞. 疏水性导电聚吡咯整理棉织物的制备及其性能[J]. 纺织学报, 2021, 42(10): 115-119. |
[3] | 王晓菲, 万爱兰, 沈新燕. 基于聚多巴胺修饰的聚吡咯导电织物制备与应变传感性能[J]. 纺织学报, 2021, 42(06): 114-119. |
[4] | 刘晓倩, 陈玉, 周惠敏, 闫源, 夏鑫. 等离子体接枝丙烯酸改性聚丙烯腈导电纳米纤维纱线的制备[J]. 纺织学报, 2021, 42(05): 109-114. |
[5] | 周歆如, 周筱雅, 马咏健, 胡铖烨, 赵晓曼, 洪剑寒, 韩潇. 导电聚苯胺/聚氨酯泡沫的制备及其压力传感性能[J]. 纺织学报, 2021, 42(04): 62-68. |
[6] | 刘淑强, 靖逸凡, 杨雅茹, 吴改红, 余娟娟, 王凯文, 李惠敏, 李甫, 张曼. 自修复双层微胶囊的制备及其在玄武岩织物上的应用[J]. 纺织学报, 2021, 42(04): 127-131. |
[7] | 于佳, 辛斌杰, 卓婷婷, 周曦. 高导电性铜/聚吡咯涂层羊毛织物的制备与表征[J]. 纺织学报, 2021, 42(01): 112-117. |
[8] | 王博, 凡力华, 原韵, 殷允杰, 王潮霞. 可拉伸聚吡咯/棉针织物的制备及其储电性能[J]. 纺织学报, 2020, 41(10): 101-106. |
[9] | 胡铖烨, 缪润伍, 韩潇, 洪剑寒, GIL Ignacio. 聚乙烯醇对芳纶复合纱聚苯胺导电层耐久性影响[J]. 纺织学报, 2020, 41(04): 91-97. |
[10] | 王晓菲, 万爱兰. 紫外线辐照聚吡咯/银导电涤纶织物的制备[J]. 纺织学报, 2020, 41(04): 112-116. |
[11] | 林佳濛, 万爱兰, 缪旭红. 聚吡咯/银导电涤纶织物的制备及其性能[J]. 纺织学报, 2020, 41(03): 113-117. |
[12] | 陈莹, 周爽, 韦恬静, 方浩霞, 李宇菲. 聚吡咯复合织物的软模板法制备及其性能[J]. 纺织学报, 2019, 40(12): 93-97. |
[13] | 何青青, 徐红, 毛志平, 张琳萍, 钟毅, 吕景春. 高导电性聚吡咯涂层织物的制备[J]. 纺织学报, 2019, 40(10): 113-119. |
[14] | 林佳濛, 缪旭红, 万爱兰. 等离子体预处理对聚吡咯/涤纶经编导电织物结构和性能的影响[J]. 纺织学报, 2019, 40(09): 97-101. |
[15] | 姜珊, 万爱兰, 缪旭红, 蒋高明, 马丕波, 陈晴. 等离子体处理对聚吡咯/涤纶复合导电纱线性能的影响[J]. 纺织学报, 2019, 40(08): 95-100. |
|