纺织学报 ›› 2022, Vol. 43 ›› Issue (10): 119-125.doi: 10.13475/j.fzxb.20210708007
张典典1,2, 于梦楠1,2, 李敏1,2, 刘明明1,2, 付少海1,2,3()
ZHANG Diandian1,2, YU Mengnan1,2, LI Min1,2, LIU Mingming1,2, FU Shaohai1,2,3()
摘要:
为提高超滑织物的物理化学稳定性,首先采用乳液聚合法以乙烯基改性纳米二氧化硅(V-SiO2)为原料制备自黏性核壳型聚合物微球,将其经浸涂-焙烘工艺组装到棉织物表面得到粗糙基底;然后利用氨基-环氧基接枝反应、氨基-羟基氢键作用将氨基硅油接枝在粗糙基底表面得到超滑织物。探究了超滑织物的疏液、防污及物理化学稳定性能。结果表明:超滑织物中超滑表面的粗糙结构由粒径为321.3 nm的微球构成,表面水滴接触角为138°;水、二甲基亚砜在超滑织物表面的滑动角分别为7°、15°;接触番茄酱、咖啡污物后,超滑表面黏附量显著减少;经200 mL以内水冲击后,超滑织物表面水、二甲基亚砜的滑动角分别小于12°、26°;在pH值为3~9条件下其表面液滴的接触角稳定在42°~49°之间。
中图分类号:
[1] | SHILLINGFORD C, MACCALLUM N, WONG T S, et al. Fabrics coated with lubricated nanostructures display robust omniphobicity[J]. Nanotechnology, 2014, 25(1): 1-28. |
[2] | 佟威, 熊党生. 仿生超疏水表面的发展及其应用研究进展[J]. 无机材料学报, 2019, 11(34):1133-1144. |
TONG Wei, XIONG Dangsheng. Development and application research progress of biomimetic superhydrophobic surfaces[J]. Journal of Inorganic Materials, 2019, 11(34): 1133-1144. | |
[3] | 郭永刚, 张鑫, 耿铁, 等. 超疏水表面耐久性能的研究进展[J]. 中国表面工程, 2018, 31(5):63-72. |
GUO Yonggang, ZHANG Xin, GENG Tie, et al. Research progress on the durability of superhydrophobic surfaces[J]. China Surface Engineering, 2018, 31(5): 63-72. | |
[4] | 王玉娟, 宋小闯, 陈云飞. 猪笼草捕虫笼超滑表面黏附特性测量和抗黏稳定性分析[J]. 东南大学学报, 2017, 47(2):259-264. |
WANG Yujuan, SONG Xiaochuang, CHEN Yunfei. Super-slip surface adhesion characteristics and anti-adhesive stability analysis of pitcher plant pitchers[J]. Journal of Southeast University, 2017, 47(2): 259-264. | |
[5] |
HUANG Y F, DING X H, LU C, et al. A facile approach to fabricate dynamically omniphobic coating on diverse substrates for self-cleaning[J]. Progress in Organic Coatings, 2019, 132: 475-480.
doi: 10.1016/j.porgcoat.2019.04.019 |
[6] |
KIM P, KREDER J M, ALVARENGA J, et al. Hierarchical or not? effect of the length scale and hierarchy of the surface roughness on omniphobicity of lubricant-infused substrates[J]. Nano Letters, 2013, 13(4): 1793-1799.
doi: 10.1021/nl4003969 pmid: 23464578 |
[7] |
SUNNY S, VOGEL N, HOWELL C, et al. Lubricant-infused nanoparticulate coatings assembled by layer-by-layer deposition[J]. Advanced Functional Materials, 2014, 24(42): 6658-6667.
doi: 10.1002/adfm.201401289 |
[8] | KELLER N, BRUCHMANN J, SOLLICH T, et al. Study of biofilm growth on slippery liquid-infused porous surfaces made from fluoropor[J]. ACS Applied Materials & Interfaces, 2019, 11(4): 4480-4487. |
[9] | 孙士美, 王鹏, 张盾. 仿生超滑表面对Al基体微生物腐蚀防护性能与机制研究[J]. 腐蚀科学与防护技术, 2016, 28(1):1-8. |
SUN Shimei, WANG Peng, ZHANG Dun. Research on the protective performance and mechanism of bionic super-slip surface against microbial corrosion of Al matrix[J]. Corrosion Science and Protection Technology, 2016, 28(1): 1-8. | |
[10] | LI J S, KLEINTSCHEKS T, RIEDER A, et al. Hydrophobic liquid-infused porous polymer surfaces for antibacterial applications[J]. ACS Applied Materials & Interfaces, 2013, 5(14): 6704-6711. |
[11] |
YIN X Y, ZHANG Y, WANG D A, et al. Integration of self-lubrication and near-infrared photothermogenesis for excellent anti-icing/deicing performance[J]. Advanced Functional Materials, 2015, 25(27): 4237-4245.
doi: 10.1002/adfm.201501101 |
[12] |
CHARPENTIER V J T, NEVILLE A, BAUDIN S, et al. Liquid infused porous surfaces for mineral fouling mitigation[J]. Journal of Colloid and Interface Science, 2015, 444: 81-86.
doi: 10.1016/j.jcis.2014.12.043 pmid: 25585291 |
[13] |
LESLIE C D, WATERHOUSE A, BERTHET B J. A bioinspired omniphobic surface coating on medical devices prevents thrombosis and biofouling[J]. Nature Biotechnology, 2014, 32(11): 1134-1140.
doi: 10.1038/nbt.3020 pmid: 25306244 |
[14] | DAMLE G V, TUMMALA A, CHANDRASHEKAR S, et al. "Insensitive" to touch: fabric-supported lubricant-swollen polymeric films for omniphobic personal protective gear[J]. ACS Applied Materials & Interfaces, 2015, 7:4224-4232. |
[15] | YU M N, LIU M M, ZHANG D D, et al. Lubricant-grafted omniphobic surfaces with anti-biofouling and drag-reduction performances constructed by reactive organic-inorganic hybrid microspheres[J]. Chemical Engineering Journal, 2021, 422: 1-12. |
[1] | 王东伟, 房宽峻, 刘秀明, 张鑫卿, 安芳芳. 胺化活性红195/聚合物微球的制备及其在棉织物染色中的应用[J]. 纺织学报, 2022, 43(04): 90-96. |
[2] | 徐兆宝, 何翠, 赵瑾朝, 黄乐平. 同轴静电纺多级微纳米纤维膜的制备及其相变调温性能[J]. 纺织学报, 2022, 43(02): 69-73. |
[3] | 蔡露, 康佳良, 吕存, 何雪梅. 自交联氟化聚丙烯酸酯乳液的制备及其应用性能[J]. 纺织学报, 2021, 42(02): 161-167. |
[4] | 盛明非, 张丽平, 付少海. 基于染料掺杂型液晶微胶囊的电刺激响应智能纺织品的制备及其性能[J]. 纺织学报, 2020, 41(08): 63-68. |
[5] | 隋智慧, 伞景龙, 王旭, 常江, 吴学栋, 祖彬. 纳米ZnO/有机氟硅改性聚丙烯酸酯乳液的合成及应用[J]. 纺织学报, 2020, 41(04): 84-90. |
[6] | 张治斌, 李刚, 毛森贤, 厉巽巽, 陈玉霜, 毛青山, 李翼, 潘志娟, 王晓沁. 丝素蛋白/壳聚糖微球制备及其抗菌性能[J]. 纺织学报, 2019, 40(10): 7-12. |
[7] | 项伟, 杨宏林, 全琼瑛. 聚丙烯酸酯/罗丹明B复合乳胶的细乳液聚合制备及其应用[J]. 纺织学报, 2019, 40(09): 122-127. |
[8] | 王东伟, 房宽峻, 刘秀明, 张健飞, 舒大武, 张鑫卿. 彩色聚合物微球的制备及其在纺织品印染中应用的研究进展[J]. 纺织学报, 2019, 40(03): 175-182. |
[9] | 魏娜 康卫民 孙诚 程博闻. 静电纺核-壳纳米包装膜的制备及其抗菌性能[J]. 纺织学报, 2018, 39(12): 13-17. |
[10] | 张权 代雅轩 马梦琴 王清清 魏取福. 光敏抗菌型静电纺丙烯酸甲酯/丙烯酸纳米纤维的制备及其性能表征[J]. 纺织学报, 2017, 38(03): 18-22. |
[11] | 陈智杰 吴明华 史鹤鹤 曹志海 戚栋明 金黔宏. 涂料印染用自黏性有机颜料亚微胶囊的细乳液法制备[J]. 纺织学报, 2017, 38(03): 91-98. |
[12] | 刘杰 杜长森 张丽平 李敏 付少海. 阳离子化棉织物的纳米乳胶荧光颜料染色[J]. 纺织学报, 2016, 37(10): 56-61. |
[13] | 张殿微 崔永珠 王晓 刘国军 魏春艳. 含氟丙烯酸酯乳液的微射流预乳化法[J]. 纺织学报, 2014, 35(2): 47-0. |
[14] | 慕毅 汪澜 吴明华 陈军良 包小霞. 环保型热转移印花用棉织物改性剂的合成及应用[J]. 纺织学报, 2013, 34(3): 87-92. |
[15] | 孙晓芳 吴明华 孙段冰. 双端丙烯酰氧基丙基聚硅氧烷改性聚丙烯酸酯合成及性能[J]. 纺织学报, 2013, 34(12): 90-0. |
|