纺织学报 ›› 2022, Vol. 43 ›› Issue (02): 37-43.doi: 10.13475/j.fzxb.20210800907

• 纤维材料 • 上一篇    下一篇

生物可降解聚己二酸-对苯二甲酸丁二醇酯纤维的制备及其环境降解性能

陈咏1, 乌婧1,2,3(), 王朝生1, 潘小虎4, 李乃祥4, 戴钧明4, 王华平1   

  1. 1.东华大学 材料科学与工程学院, 上海 201620
    2.东华大学 产业用纺织品教育部工程研究中心, 上海 201620
    3.东华大学 纺织科技创新中心, 上海 201620
    4.中国石化仪征化纤有限责任公司, 江苏 扬州 211900
  • 收稿日期:2021-08-02 修回日期:2021-11-22 出版日期:2022-02-15 发布日期:2022-03-15
  • 通讯作者: 乌婧
  • 作者简介:陈咏(1992—),男,博士。主要研究方向为环境友好高分子材料。
  • 基金资助:
    中国石油化工有限公司研发项目(420039-1);产业用纺织品教育部工程研究中心基地建设项目开放课题(K2020-04)

Preparation and environmental degradation behavior of biodegradable poly (butylene adipate-co-terephthalate) fiber

CHEN Yong1, WU Jing1,2,3(), WANG Chaosheng1, PAN Xiaohu4, LI Naixiang4, DAI Junming4, WANG Huaping1   

  1. 1. College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
    2. Engineering Research Center of Technical Textile, Ministry of Education, Donghua University, Shanghai 201620, China
    3. Innovation Center for Textile Science and Technology, Donghua University, Shanghai 201620, China
    4. Sinopec Yizheng Chemical Fibre Co., Ltd., Yangzhou, Jiangsu 211900, China
  • Received:2021-08-02 Revised:2021-11-22 Published:2022-02-15 Online:2022-03-15
  • Contact: WU Jing

摘要:

为研究生物可降解聚己二酸-对苯二甲酸丁二醇酯(PBAT)的可纺性及纤维降解性能,采用熔融纺丝-牵伸二步法制得生物可降解PBAT纤维,研究了纺丝温度、牵伸倍数对PBAT纤维结晶度、回潮率、力学性能的影响,对比分析了PBAT纤维在不同环境下的降解性能。结果表明:PBAT的最佳纺丝温度为260 ℃,且随着牵伸倍数的增加,PBAT纤维的断裂强度、结晶度和取向度呈快速上升趋势,而断裂伸长率呈下降趋势;低温、干燥的非生物环境因素对PBAT纤维的降解性能影响最小,在该环境中储存1个月纤维断裂强度仅下降3.6%;相较于酶解和水解生物环境条件下,土壤环境对PBAT纤维的影响更明显,可使纤维的结晶度从34.45%下降到19.36%。

关键词: 聚己二酸-对苯二甲酸丁二醇酯, 环境降解性能, 生物基纤维, 可纺性, 力学性能

Abstract:

In order to study the spinnability and fiber degradation of biodegradable poly(butylene adipate-co-terephthalate) (PBAT), biodegradable PBAT fiber was prepared using a two-step method involving melt spinning and drafting. The effects of spinning temperature and drafting ratio on the crystallinity, moisture regain and mechanical properties of PBAT fiber were studied, and the degradation properties of PBAT fiber in different environments were compared and analyzed. The results show that the optimum spinning temperature of PBAT was 260 ℃, and with the increase of drafting ratio, the breaking strength, crystallinity and orientation of PBAT fiber increased rapidly, while the elongation at break decreased. It was found that the abiotic cold and dry environments had the least influence on the properties of PBAT fibers, where the fiber strength decreased by only 3.6% after one month storage under such a circumstance. Under biological conditions, on the other hand, the influence of soil was more obvious compared to enzymatic hydrolysis and hydrolysis, where the crystallinity of PBAT fiber decreased from 34.45% to 19.36%.

Key words: poly(butylene adipate-co-terephthalate), environmental degradation performance, bio-based fiber, spinnability, mechanical property

中图分类号: 

  • TQ342

表1

PBAT纤维制备工艺参数"

螺杆温度/℃ 纺丝温
度/℃
纺丝速度/
(m·min-1)
喷丝板
参数
Ⅰ区 Ⅱ区 Ⅲ区 Ⅳ区
255 258 260 260 260 800 36×0.3
×0.9

表2

PBAT切片的核磁分析结果"

BT段含
量/%
BA段含
量/%
BT段序
列长度
BA段序
列长度
无规度
46.8 53.2 1.80 2.21 1.008

表3

不同纺丝温度下切片的纺丝效果"

纺丝温度/℃ 纺丝情况 纺丝性
250 硬头丝
260 较好
270 断丝多
280 不可纺

表4

不同牵伸倍数PBAT纤维的复丝力学性能"

牵伸
倍数
线密度/
dtex
断裂强度/
(cN·dtex-1)
断裂伸
长率/%
1.4 262.38 1.15 186.6
1.7 257.74 1.25 170.4
2.0 235.30 1.38 164.4
2.3 189.46 1.69 133.7
2.5 139.60 2.24 66.8

表5

不同牵伸倍数对PBAT纤维的影响"

牵伸
倍数
声速取向因子/
(km·s-1)
结晶
度/%
回潮
率/%
1.4 0.402 31.43 1.46
1.7 0.431 31.73 1.33
2.0 0.462 35.85 1.13
2.3 0.576 41.67 0.81

图1

不同牵伸倍数下PBAT纤维的XRD图谱"

图2

非生物环境因素对纤维力学性能的影响"

图3

降解周期对纤维力学性能的影响"

图4

降解4周后样品表面扫描电镜照片"

图5

降解周期对花园土降解产物结晶度的影响"

[1] GEYER R, JAMBECK J R, LAW K L. Production, use, and fate of all plastics ever made[J]. Science Advances, 2017. DOI: 10.1126/sciadv.1700782.
doi: 10.1126/sciadv.1700782
[2] 周大旺, 乌婧, 杨建平, 等. 纤维微塑料的研究现状及其削减策略[J]. 纺织学报, 2021, 42(6): 8-17.
ZHOU Dawang, WU Jing, YANG Jianping, et al. Research progress of fibrous microplastics and mitigation strategies[J]. Journal of Textile Research, 2021, 42(6): 8-17.
[3] 国家发展和改革委员会. 国家发展改革委生态环境部关于进一步加强塑料污染治理的意见[EB/OL]. [2020-01-19]. https://www.ndrc.gov.cn/xxgk/zcfb/tz/202001/t20200119_1219275.html?code=&state=123.
National Developmennt and Reform Commission. Opinions of national development and reform commission, ministry of ecology and environment on further strengthening the control of plastic pollution [EB/OL]. [2020-01-19]. https://www.ndrc.gov.cn/xxgk/zcfb/tz/202001/t20200119_1219275.html?code=&state=123.
[4] ABAYOMI O A, RANGE P, ALGHOUTI M A, et al. Microplastics in coastal environments of the arabian gulf[J]. Marine Pollution Bulletin, 2017, 124(1): 181-188.
doi: 10.1016/j.marpolbul.2017.07.011
[5] THUSHARI G, SENEVIRATHNA J, YAKUPITIYAGE A, et al. Effects of microplastics on sessile invertebrates in the eastern coast of Thailand: an approach to coastal zone conservation[J]. Marine Pollution Bulletin, 2017, 124(1): 349-355.
doi: 10.1016/j.marpolbul.2017.06.010
[6] LAW K L, THOMPSON R C. Microplastics in the seas[J]. Science, 2014, 345(6193): 144-145.
doi: 10.1126/science.1254065
[7] ALBERTSSON A C, HAKKARAINEN M. Designed to degrade Suitably designed degradable polymers can play a role in reducing plastic waste[J]. Science, 2017, 358(6365): 872-873.
doi: 10.1126/science.aap8115
[8] WEI X F, BOHLEN M, LINDBLAD C, et al. Microplastics generated from a biodegradable plastic in freshwater and seawater[J]. Water Research, 2021, 198(6): 117-123.
[9] 欧阳春平, 卢昌利, 郭志龙, 等. 聚对苯二甲酸-己二酸丁二醇酯(PBAT)合成工艺技术研究进展与应用展望[J]. 广东化工, 2021, 48(6): 47-48.
OUYANG Chunping, LU Changli, GUO Zhilong, et al. Prospection about application and research progress of synjournal technology of poly (butyleneadipate-co-terephthalate)[J]. Guangdong Chemical Industry, 2021, 48(6): 47-48.
[10] FERREIRA F V, CIVIDANES L S, GOUVEIA R F, et al. An overview on properties and applications of poly(butylene adipate-co-terephthalate): PBAT based composites[J]. Polymer Engineering and Science, 2019, 59:7-15.
[11] CRANSTON E, KAWADA J, RAYMOND S, et al. Co-crystallization model for synthetic biodegradable poly(butylene adipate-co-butylene terephthalate)[J]. Macromolecules, 2003, 4:995-999.
[12] FU Y, WU G, BIAN X, et al. Biodegradation behavior of poly(butylene adipate-co-terephthalate), poly(lactic acid), and their blend in freshwater with sediment[J]. Molecules, 2020, 25(17): 3946-3961.
doi: 10.3390/molecules25173946
[13] WITT U, MULLER R J, DECKWER W D. New biodegradable polyester-copolymers from commodity chemicals with favorable use properties[J]. Journal of Environmental Polymer Degradation, 1995, 3(4): 215-223.
doi: 10.1007/BF02068676
[14] MULLER R J, WITT U, RANTZE E, et al. Architecture of biodegradable co-polyesters containing aromatic constituents[J]. Polymer Degradation and Stability, 1998, 59:203-208.
doi: 10.1016/S0141-3910(97)00186-9
[15] 马一萍, 张乃文, 杨军伟, 等. PBAT的制备与性能[J]. 塑料, 2010, 39(4): 98-101.
MA Yiping, ZHANG Naiwen, YANG Junwei, et al. Preparation and properties of PBAT[J]. Plastics, 2010, 39(4): 98-101.
[16] 郝超, 张长远, 季菁华. 聚己二酸-对苯二甲酸丁二醇酯型生物可降解聚酯的合成与交联改性研究[J]. 化学世界, 2018, 59(3): 154-159.
HAO Chao, ZHANG Changyuan, JI Jinghua. Synjournal and modification of aliphatic-aromatic copolymer-poly(butylene adipate-co-butylene terephthalate) biodegradable polyester[J]. Chemical World, 2018, 59(3): 154-159.
[17] HERRERA R, FRANCO L, RODRIGUEZ G A, et al. Characterization and degradation behavior of poly (buty-lene adipate-co-terephthalate)s[J]. Journal of Polymer Science Part A: Polymer Chemistry, 2002, 40(23): 4141-4157.
doi: 10.1002/pola.v40:23
[18] GAN Z, KUWABARA K, YAMAMOTO M, et al. Solid-state structures and thermal properties of aliphatic-aromatic poly(butylene adipate-co-butylene terephthalate) copolyesters[J]. Polymer Degradation & Stability, 2004, 83(2): 289-300.
[19] SHI X Q, ITO H, KIKUTANI T. Characterization on mixed-crystal structure and properties of poly(butylene adipate-co-terephthalate) biodegradable fibers[J]. Polymer, 2005, 46(25): 11442-11450.
doi: 10.1016/j.polymer.2005.10.065
[20] SHI X Q, KIKUTANI T, ITO H, et al. Characterization on mixed-crystal structure of poly(butylene terephthalate/succinate/adipate) biodegradable copolymer fibers[J]. Polymer, 2005, 46(3): 751-760.
doi: 10.1016/j.polymer.2004.11.080
[21] SHI X Q, ITO H, KIKUTANI T. Structure development and properties of high-speed melt spun poly(butylene terephthalate)/poly(butylene adipate-co-terephthalate) bicomponent fibers[J]. Polymer, 2006, 47(2): 611-616.
doi: 10.1016/j.polymer.2005.11.051
[22] 郑拓. 生物可降解聚(己二酸丁二醇酯-对苯二甲酸丁二醇酯)的纤维成型及紫外交联研究[D]. 上海:东华大学, 2016:10-42.
ZHENG Tuo. Study on formation and ultraviolet crosslinking of biodegradable poly(butylene adipate-co-terephthalate) fibers[D]. Shanghai:Donghua University, 2016: 10-42.
[23] 潘宏伟. 聚对苯二甲酸丁二醇-co-己二酸丁二醇酯(PBAT)生物降解膜的制备及性质研究[D]. 长春:长春工业大学, 2016:11-40.
PAN Hongwei. Preparation and properties of biodegradable poly(butylene terephthalate-co-butylene adipate) films[D]. Changchun: Changchun University of Technology, 2016: 11-40.
[24] 李鑫. 聚己二酸/对苯二甲酸丁二酯的合成与表征[D]. 镇江:江苏科技大学, 2018: 10-71.
LI Xin. Synthesis and characterization of poly(butylene adipate-co-terephthalate)[D]. Zhenjiang:Jiangsu University of Science and Technology, 2018: 10-71.
[25] LAYCOOK B, NIKOLI M, COLWELL J M, et al. Lifetime prediction of biodegradable polymers[J]. Progress in Polymer Science, 2017, 71:144-189.
doi: 10.1016/j.progpolymsci.2017.02.004
[26] ALLTRY R, LAMNAWAR K, MAAZOUZ A. Improvement of thermal stability, rheological and mechanical properties of PLA, PBAT and their blends by reactive extrusion with functionalized epoxy[J]. Polymer Degradation & Stability, 2012, 97(10): 1898-1914.
[27] 张敏, 孟庆阳, 刁晓倩, 等. PLA/PBAT共混物的降解性能研究[J]. 中国塑料, 2016, 30(8): 79-86.
ZHANG Min, MENG Qingyang, DIAO Xiaoqian, et al. Biodegradation behavior of PLA/PBAT blends[J]. China Plastics, 2016, 30(8): 79-86.
[28] 许新建. 生物可降解脂肪族/芳香族共聚酯(PBST)纤维的制备及其性能研究[D]. 上海:东华大学, 2007: 1-99.
XU Xinjian. Preparation and properties of biodegradable aliphatic-aromatic copolyesters (PBST) fiber[D]. Shanghai:Donghua University, 2017: 1-99.
[29] 杨菁卉, 杨福馨, 李绍菁, 等. PBAT/淀粉填充可降解薄膜的制备及降解性能的研究[J]. 功能材料, 2020, 51(10): 10075-10080.
YANG Jinghui, YANG Fuxin, LI Shaojing, et al. Preparation and degradability of PBAT/starch filled degradable firms[J]. Journal of Functional Materials, 2020, 51(10): 10075-10080.
[30] WENG Y X, JIN Y J, MENG Q Y, et al. Biodegradation behavior of poly(butylene adipate-co-terephthalate) (PBAT), poly(lactic acid) (PLA), and their blend under soil conditions[J]. Polymer Testing, 2013, 32(5): 918-926.
doi: 10.1016/j.polymertesting.2013.05.001
[31] KAMAL M R, HUANG B. Handbook of polymer degradation[M]. New York: Marcel Dekker Inc, 1992: 127-168.
[32] DING Y, HUANG D, AI T, et al. Bio-based poly(buty-lene furandicarboxylate-co-glycolate) copolyesters: synjournal, properties, and hydrolysis in different aquatic environments for water degradation application[J]. ACS Sustainable Chemistry & Engineering, 2021, 9(3): 1254-1263.
[33] 曲萍, 郭宝华, 王海波, 等. PBAT全生物降解地膜在玉米田中的降解特性[J]. 农业工程学报, 2017, 33(17): 194-199.
QU Ping, GUO Baohua, WANG Haibo, et al. Degaradation characteristics of PBAT mulch in maize field[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(17): 194-199.
[1] 闵小豹, 潘志娟. 生物质纤维/菠萝叶纤维多组分混纺纱线的品质与性能[J]. 纺织学报, 2022, 43(01): 74-79.
[2] 李龙龙, 魏朋, 吴萃霞, 闫金飞, 娄贺娟, 张一风, 夏于旻, 王燕萍, 王依民. 基于对羟基苯丙酸的生物基液晶共聚酯纤维的合成与性能[J]. 纺织学报, 2022, 43(01): 9-14.
[3] 王松立, 王美林, 周湘, 刘遵峰. 人造蜘蛛丝与仿蜘蛛丝纤维的研究进展[J]. 纺织学报, 2021, 42(12): 174-179.
[4] 宋雪旸, 张岩, 徐成功, 王萍, 阮芳涛. 碳纤维/聚丙烯/聚乳酸增强复合材料的力学性能[J]. 纺织学报, 2021, 42(11): 84-88.
[5] 周濛濛, 蒋高明, 高哲, 郑培晓. 纬编衬经衬纬管状织物增强复合材料研究进展[J]. 纺织学报, 2021, 42(07): 184-191.
[6] 余美琼, 袁红梅, 陈礼辉. 纤维素/氯化锂/N, N-二甲基乙酰胺溶液的流变性能[J]. 纺织学报, 2021, 42(05): 23-30.
[7] 陆振乾, 杨雅茹, 荀勇. 纤维对水泥基复合材料性能影响研究进展[J]. 纺织学报, 2021, 42(04): 177-183.
[8] 左亚君, 蔡赟, 王蕾, 高卫东. 纯棉纱线合股数对织物性能的影响[J]. 纺织学报, 2021, 42(04): 74-79.
[9] 孙朝续, 刘修才. 生物基聚酰胺56纤维在纺织领域的应用研究进展[J]. 纺织学报, 2021, 42(04): 26-32.
[10] 黄笛, 李芳, 李刚. 涤纶/蚕丝机织心脏瓣膜的制备及其性能[J]. 纺织学报, 2021, 42(02): 74-79.
[11] 孙亚博, 李立军, 马崇启, 吴兆南, 秦愈. 基于ABAQUS的筒状纬编针织物拉伸力学性能模拟[J]. 纺织学报, 2021, 42(02): 107-112.
[12] 王迎, 王怡婷, 吴佳庆, 郭亚飞, 郝新敏. 生物基锦纶56用抗静电纺丝油剂的复配及其对短纤维可纺性的影响[J]. 纺织学报, 2021, 42(01): 84-89.
[13] 杨萍, 严飙, 马丕波. 网状结构织物制备与应用研究进展[J]. 纺织学报, 2021, 42(01): 175-180.
[14] 陈美玉, 刘玉琳, 胡革明, 孙润军. 涡流纺纱线的包缠加捻对其力学性能的影响[J]. 纺织学报, 2021, 42(01): 59-66.
[15] 宋星, 金肖克, 祝成炎, 蔡冯杰, 田伟. 玻璃纤维/光敏树脂复合材料的3D打印及其力学性能[J]. 纺织学报, 2021, 42(01): 73-77.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 顾新建;杨志雄;张晓倩;周华;金小团. 服装大批量定制中的关键技术[J]. 纺织学报, 2003, 24(03): 85 -87 .
[2] 杨红穗;张元明. 大麻纺织应用前景及研究现状[J]. 纺织学报, 1999, 20(04): 62 -64 .
[3] 林彬;李哲. 泡泡袖袖山褶皱凸起量的影响因素[J]. 纺织学报, 2009, 30(06): 104 -106 .
[4] 贾庆龙, 焦晓宁, 王忠忠. PVDF静电纺锂电隔膜纤维直径预测模型及优化[J]. 纺织学报, 2012, 33(3): 22 -26 .
[5] 陈仁忠 胡毅 袁菁红 沈桢 陈艳丽 吕慧 何霞. 静电纺MnO2/PAN纳米纤维膜的制备及其催化氧化甲醛性能[J]. 纺织学报, 2015, 36(05): 1 -6 .
[6] 崔玉梅 程隆棣 肖远淑. 云南野生牛角瓜纤维的吸湿与吸水性[J]. 纺织学报, 2016, 37(07): 22 -27 .
[7] 田明伟 李增庆 卢韵静 朱士凤 张宪胜 曲丽君. 纺织基柔性力学传感器研究进展[J]. 纺织学报, 2018, 39(05): 170 -176 .
[8] 杨晨啸 李鹂. 柔性智能纺织品与功能纤维的融合[J]. 纺织学报, 2018, 39(05): 160 -169 .
[9] 陈悦, 赵永欢, 褚朱丹, 庄志山, 邱琳琳, 杜平凡. 基于碳纤维及其织物的柔性锂电池电极研究进展[J]. 纺织学报, 2019, 40(02): 173 -180 .
[10] 姬长春, 张开源, 王玉栋, 王新厚. 熔喷三维气流场的数值计算与分析[J]. 纺织学报, 2019, 40(08): 175 -180 .