纺织学报 ›› 2022, Vol. 43 ›› Issue (08): 183-188.doi: 10.13475/j.fzxb.20210801707

• 综合述评 • 上一篇    下一篇

织物增强柔性防刺复合材料的研究进展

王秋实1,2, 何彩婷1,2, 王珊1,2, 陈美玉1,2, 梁高勇3, 孙润军1,2()   

  1. 1.西安工程大学 纺织科学与工程学院, 陕西 西安 710048
    2.西安工程大学 功能性纺织材料及制品;教育部重点实验室, 陕西 西安 710048
    3.军事科学院系统工程研究院, 北京 100010
  • 收稿日期:2021-08-02 修回日期:2022-01-09 出版日期:2022-08-15 发布日期:2022-08-24
  • 通讯作者: 孙润军
  • 作者简介:王秋实(1989—),男,讲师,博士。主要研究方向为纺织复合材料。
  • 基金资助:
    陕西省教育厅重点科学研究计划项目(21JY015)

Research progress in fabric reinforced flexible stab-resistance composites

WANG Qiushi1,2, HE Caiting1,2, WANG Shan1,2, CHEN Meiyu1,2, LIANG Gaoyong3, SUN Runjun1,2()   

  1. 1. School of Textile Science and Engineering, Xi'an Polytechnic University, Xi'an, Shaanxi 710048, China
    2. Key Laboratory of Functional Textile Material and Product (Xi'an Polytechnic University), Ministry of Education, Xi'an, Shaanxi 710048, China
    3. Systems Engineering Institute, Academy of Military Sciences, Beijing 100010, China
  • Received:2021-08-02 Revised:2022-01-09 Published:2022-08-15 Online:2022-08-24
  • Contact: SUN Runjun

摘要:

为进一步了解警用防刺服用织物增强柔性防刺复合材料,提升现有柔性防护装备的防刺性能水平,以复合材料的柔性基体作为切入点,系统介绍了剪切增稠型、硬质颗粒涂层型和树脂增强型等多种类型的柔性防刺复合材料的结构特点、性能特征及其主要影响因素,并从柔性基体的结构特征出发,总结了织物增强柔性防刺复合材料在防刺机制研究方面的最新进展;最后针对防护装备在穿着灵活性和舒适性方面的不足,提出了整合不同类型柔性防刺复合材料在结构性能特征和防刺机制方面的优势,开发复合型织物增强柔性防刺复合材料的发展方向。

关键词: 防护装备, 柔性复合材料, 柔性基体, 防刺性能, 防刺机制

Abstract:

In order to further understand the fabric-reinforced flexible stab-resistance composites for police body armor and improve the stab-resistance of the existing flexible protective equipment, a soft matrix was taken as the entry point to systematically introduce the structure and performance characteristics and influencing factors of various flexible stab-resistance composites, using principles such as shear thickening, hard particle coating, and enhanced resin. The latest research progress in the stab-resistance mechanism of fabric-reinforced flexible stab-resistance composites was summarized. Based on existing studies, the review highlighted the necessity of further research to overcome the shortcomings of protective equipment in terms of flexibility and comfort. A suggestion was made to integrate the advantages of different types of flexible stab-resistance composites in structure and performance characteristics and the stab-resistance mechanisms.

Key words: body armor, flexible composite, soft matrix matrices, stab-resistance property, stab-resistance mechanism

中图分类号: 

  • TB332

图1

刀尖在织物表面的受力分解情况"

[1] 田鹭新, 曹海建, 黄晓梅. 软质防刺材料的研究现状及展望[J]. 棉纺织技术, 2020, 48(6): 12-16.
TIAN Luxin, CAO Haijian, HUANG Xiaomei. Research status and prospect of soft anti-stab material[J]. Cotton Textile Technology, 2020, 48(6): 12-16.
[2] 梁高勇, 王秋实, 何彩婷, 等. 织物增强柔性防刺材料的结构特征与防刺机理[J]. 纺织高校基础科学学报, 2021, 34(1): 1-6.
LIANG Gaoyong, WANG Qiushi, HE Caiting, et al. Structural characteristics and stab-resistance mechanisms of fabric-reinforced flexible composites[J]. Basic Sciences Journal of Textile Universities, 2021, 34(1):1-6.
[3] BARNES H A. Shear-thickening (″dilatancy″) in suspensions of nonaggregating solid particles dispersed in Newtonian liquids[J]. Journal of Rheology, 1989, 33(2): 329-366.
doi: 10.1122/1.550017
[4] DECKER M J, HALBACH C J, NAM C H, et al. Stab resistance of shear thickening fluid (STF)-treated fabrics[J]. Composites Science and Technology, 2007, 67(3/4): 565-578.
doi: 10.1016/j.compscitech.2006.08.007
[5] WAGNER N J, BRADY J F. Shear thickening in colloidal dispersions[J]. Physics Today, 2009, 62(10): 27-32.
[6] FENG X, LI S, WANG Y, et al. Effects of different silica particles on quasi-static stab resistant properties of fabrics impregnated with shear thickening fluids[J]. Materials & Design, 2014, 64: 456-461.
doi: 10.1016/j.matdes.2014.06.060
[7] HASANZADEH M, MOTTAGHITALAB V, BABAEI H, et al. The influence of carbon nanotubes on quasi-static puncture resistance and yarn pull-out behavior of shear-thickening fluids (STFs) impregnated woven fabrics[J]. Composites Part A: Applied Science and Manufacturing, 2016, 88: 263-271.
doi: 10.1016/j.compositesa.2016.06.006
[8] LI W, XIONG D, ZHAO X, et al. Dynamic stab resistance of ultra-high molecular weight polyethylene fabric impregnated with shear thickening fluid[J]. Materials & Design, 2016, 102: 162-167.
[9] WANG F, ZHANG Y, ZHANG H, et al. The influence of graphene nanoplatelets (GNPs) on the semi-blunt puncture behavior of woven fabrics impregnated with shear thickening fluid (STF)[J]. RSC Advances, 2018, 8(10): 5268-5279.
doi: 10.1039/C7RA12802A
[10] XU Y, CHEN X, WANG Y, et al. Stabbing resistance of body armour panels impregnated with shear thickening fluid[J]. Composite Structures, 2017, 163: 465-473.
doi: 10.1016/j.compstruct.2016.12.056
[11] GüRGEN S, KUŞHAN M C. The stab resistance of fabrics impregnated with shear thickening fluids including various particle size of additives[J]. Composites Part A: Applied Science and Manufacturing, 2017, 94: 50-60.
doi: 10.1016/j.compositesa.2016.12.019
[12] 陆振乾, 许玥. 剪切增稠液浸渍超高分子量聚乙烯织物的防锥刺性能[J]. 纺织学报, 2018, 39(10): 58-62,67.
LU Zhenqian, XU Yue. Study on stab-resistant performance of shear thickening fluids impregnated ultra-high-molecular-weight polyethylene fabric[J]. Journal of Textile Research, 2018, 39(10) : 58-62,67.
[13] 李聃阳, 王瑞, 刘星, 等. 剪切增稠液对不同结构芳纶织物防刺性能的影响[J]. 纺织学报, 2020, 41(3): 106-112.
LI Danyang, WANG Rui, LIU Xing, et al. Effect of shear thickening fluid on quasi-static stab resistance of aramid-based soft armor materials[J]. Journal of Textile Research, 2020, 41(3): 106-112.
[14] 刘星, 霍俊丽, 李婷婷, 等. 等离子体处理二氧化硅对剪切增稠液体含浸芳纶织物防刺性能的影响[J]. 材料导报, 2019, 33(16): 2799-2803.
LIU Xing, HUO Junli, LI Tingting, et al. Effect of plasma-treated silica on the stab resistance of shear thickening fluid impregnated aramid fabrics[J]. Materials Reports, 2019, 33(16): 2799-2803.
[15] 路瑶. 剪切增稠流体的流变行为研究及其在防刺材料中的应用[D]. 上海: 东华大学, 2014: 49-50.
LU Yao. Rheological behavior of shear thickening fluid and its application in stab-resistant materials[D]. Shanghai: Donghua University, 2014: 49-50.
[16] LIU M, ZHANG S, LIU S, et al. CNT/STF/Kevlar-based wearable electronic textile with excellent anti-impact and sensing performance[J]. Composites Part A: Applied Science and Manufacturing, 2019. DOI: 10.1016/j.compositesa.2019.105612.
doi: 10.1016/j.compositesa.2019.105612
[17] 王瑞, 李聃阳, 刘星, 等. 氧等离子体处理碳纳米管对剪切增稠液增强芳纶织物防刺性能的影响[J]. 材料导报, 2020, 34(18): 18188-18193.
WANG Rui, LI Danyang, LIU Xing, et al. Effect of oxygen-plasma-modified carbon nanotubes on the stab resistance of shear thickening fluid impregnated Kevlar fabrics[J]. Materials Reports, 2020, 34(18): 18188-18193.
[18] LI D, WANG R, LIU X, et al. Shear-thickening fluid using oxygen-plasma-modified multi-walled carbon nanotubes to improve the quasi-static stab resistance of Kevlar fabrics[J]. Polymers (Basel), 2018. DOI: org/10.3390/polym10121356.
doi: org/10.3390/polym10121356
[19] 俞科静, 沙晓菲, 钱坤, 等. 复配型剪切增稠液体对非织造织物防刺性能的影响[J]. 功能材料, 2012, 43(23): 3300-3303.
YU Kejing, SHA Xiaofei, QIAN Kun, et al. Effect of composite shear thickening fluid on the stab resistance of nonwoven fabrics[J]. Journal of Functional Materials, 2012, 43(23): 3300-3303.
[20] 秦建彬. 剪切增稠液及其复合材料的制备与性能研究[D]. 西安: 西北工业大学, 2017: 85-122.
QIN Jianbin. Preparation and properties of shear thickening fluid and its' composites[D]. Xi'an: Northwestern Polytechnical University, 2017: 85-122.
[21] QIN J, ZHANG G, MA Z, et al. Effects of ionic structures on shear thickening fluids composed of ionic liquids and silica nanoparticles[J]. RSC Advances, 2016, 6(85): 81913-81923.
doi: 10.1039/C6RA12460G
[22] QIN J, GUO B, ZHANG L, et al. Soft armor materials constructed with Kevlar fabric and a novel shear thickening fluid[J]. Composites Part B: Engineering, 2020. DOI: org/10.1016/j.compositesb.2019.107686.
doi: org/10.1016/j.compositesb.2019.107686
[23] WANG Q, SUN R, YAO M, et al. The influence of temperature on inter-yarns fictional properties of shear thickening fluids treated Kevlar fabrics[J]. Composites Part A: Applied Science and Manufacturing, 2019, 116: 46-53.
doi: 10.1016/j.compositesa.2018.10.020
[24] 梁高勇, 孙润军, 王秋实, 等. 温度对SiO2/PEG基剪切增稠液流变性能的影响[J]. 纺织高校基础科学学报, 2020, 33(1): 15-20.
LIANG Gaoyong, SUN Runjun, WANG Qiushi, et al. Effect of temperature on rheological properties of SiO2/PEG based thickening fluid[J]. Basic Sciences Journal of Textile Universities, 2020, 33(1): 15-20.
[25] KALMAN D P, MERRILL R L, WAGNER N J, et al. Effect of particle hardness on the penetration behavior of fabrics intercalated with dry particles and concentrated particle-fluid suspensions[J]. ACS Applied Materials & Interfaces, 2009, 1(11): 2602-2612.
[26] MAWKHLIENG U, MAJUMDAR A. Deconstructing the role of shear thickening fluid in enhancing the impact resistance of high-performance fabrics[J]. Composites Part B: Engineering, 2019. DOI: org/10.1016/j.compositesb.2019.107167.
doi: org/10.1016/j.compositesb.2019.107167
[27] 王新厚, 张琳梅, 孙晓霞. 柔性防刺涤纶/碳化硅织物的制备及其防刺性能[J]. 纺织学报, 2019, 40(6): 172-176,182.
WANG Xinhou, ZHANG Linmei, SUN Xiaoxia. Preparation of flexible puncture-proof polyester/SiC and puncture-proof property[J]. Journal of Textile Research, 2019, 40(6): 172-176,182.
[28] 杨婉秋, 刘晓艳. 硬质颗粒织物的防刺性能研究[J]. 纺织科学与工程学报, 2019, 36(2): 17-20.
YANG Wanqiu, LIU Xiaoyan. Study on the stab resistance of hard granular fabrics[J]. Journal of Textile Science and Engineering, 2019, 36(2): 17-20.
[29] NAYAK R, KANESALINGAM S, WANG L, et al. Stab resistance and thermophysiological comfort properties of boron carbide coated aramid and ballistic nylon fabrics[J]. Journal of The Textile Institute, 2018, 110(8): 1159-1168.
doi: 10.1080/00405000.2018.1548800
[30] 田野. 应用摩擦角分析物体临界平衡问题[J]. 青海大学学报(自然科学版), 2001(1): 85-88.
TIAN Ye. The friction angle is used to analyze the critical equilibrium problem[J]. Journal of Qinghai University(Natural Science Edition), 2001(1): 85-88.
[31] 郭少英. 关于摩擦自锁现象的讨论[J]. 邯郸师专学报, 2000(3): 34-35.
GUO Shaoying. Discussion on friction self-locking phenomenon[J]. Journal of Handan Teachers College, 2000(3): 34-35.
[32] 赵玉梅. 柔性复合防刺服的研究[D]. 上海: 东华大学, 2005: 18-20.
ZHAO Yumei. Study of complex stab-resistant body armor[D]. Shanghai: Donghua University, 2005: 18-20.
[33] LI C S, HUANG X C, LI Y, et al. Stab resistance of UHMWPE fiber composites impregnated with thermoplastics[J]. Polymers for Advanced Technologies, 2014, 25(9): 1014-1019.
doi: 10.1002/pat.3344
[34] HOSUR M V, MAYO JR J B, WETZEL E, et al. Studies on the fabrication and stab resistance characterization of novel thermoplastic-Kevlar composites[J]. Solid State Phenomena, 2008, 136: 83-92.
doi: 10.4028/www.scientific.net/SSP.136.83
[35] MAYO JR J B, WETZEL E D, HOSUR M V, et al. Stab and puncture characterization of thermoplastic-impregnated aramid fabrics[J]. International Journal of Impact Engineering, 2009, 36(9): 1095-1105.
doi: 10.1016/j.ijimpeng.2009.03.006
[36] 雷鹏, 孙润军, 王秋实, 等. 纳米SiO2/WPU复合芳纶防刺材料[J]. 印染, 2019, 45(1): 30-34.
LEI Peng, SUN Runjun, WANG Qiushi, et al. Nano-SiO2/WPU composite aramid stab resistant material[J]. China Dyeing & Finishing, 2019, 45(1): 30-34.
[37] 雷鹏. 多层织物复合材料的制备及防刺性能研究[D]. 西安: 西安工程大学, 2019: 23-44.
LEI Peng. Preparation and stab-resistant properties of multilayer fabric composites[D]. Xi'an: Xi'an Polytechnic University, 2019: 23-44.
[38] 刘娟, 王新厚. 树脂成型柔性防刺材料空隙率对防刺性能的影响[J]. 产业用纺织品, 2015, 33(5): 7-10.
LIU Juan, WANG Xinhou. Effect of void fraction on the properties of flexible resin forming stab resistance materials[J]. Technical Textiles, 2015, 33(5): 7-10.
[39] 练滢, 刘春娜, 王新厚. 树脂成型柔性防刺材料的防刺性能研究[J]. 产业用纺织品, 2016, 34(10): 21-25.
LIAN Ying, LIU Chunna, WANG Xinhou. Study on the stab-resistance performance of flexible stab-resistance materials by means of resin molding[J]. Technical Textiles, 2016, 34(10): 21-25.
[40] 董继萍. 树脂片防刺织物的结构设计与防护性能研究[D]. 上海: 东华大学, 2018: 31-43.
DONG Jiping. Structure design and protective performance of the stab-resistant fabric with resin flakes[D]. Shanghai: Donghua University, 2018: 31-43.
[41] 董继萍, 刘晓艳, 于伟东. 织物表面防刺割树脂片形状的确定[J]. 纺织学报, 2017, 38(12): 60-64.
DONG Jiping, LIU Xiaoyan, YU Weidong. Determination about geometry of stab-resistant resin flakes on surface of fabric[J]. Journal of Textile Research, 2017, 38(12): 60-64.
[42] 袁梦琦, 郭亚鑫, 钱新明. 一种新型仿生型防刺服的基板设计与防刺机理探究[J]. 北京理工大学学报, 2020, 40(6): 609-616.
YUAN Mengqi, GUO Yaxin, QIAN Xinming. Substrate design and stab-resistant mechanism of a new type of bionic stab-resistant clothing[J]. Transactions of Beijing Institute of Technology, 2020, 40(6): 609-616.
[1] 张婷婷, 张杰, 田新宇, 陈祯, 任玮. 气密型化学防护服研究进展[J]. 纺织学报, 2020, 41(12): 174-181.
[2] 马飞飞. 离散树脂成型复合材料的防刺与服用性能[J]. 纺织学报, 2020, 41(07): 67-71.
[3] 陈立富, 于伟东. 人造金刚石填充聚酰亚胺树脂基复合材料防刺性能[J]. 纺织学报, 2020, 41(05): 38-44.
[4] 张恒宇, 张宪胜, 肖红, 施楣梧. 二维碳化物在柔性电磁吸波领域的研究进展[J]. 纺织学报, 2020, 41(03): 182-187.
[5] 李聃阳, 王瑞, 刘星, 张淑洁, 夏兆鹏, 阎若思, 代二庆. 剪切增稠液对不同结构芳纶织物防刺性能的影响[J]. 纺织学报, 2020, 41(03): 106-112.
[6] 王新厚, 张琳梅, 孙晓霞. 柔性防刺涤纶/碳化硅织物的制备及其防刺性能[J]. 纺织学报, 2019, 40(06): 171-175.
[7] 杨婉秋, 刘晓艳, 于伟东. 多层防刺材料中间隔织物的缓冲作用[J]. 纺织学报, 2019, 40(04): 51-54.
[8] 邢京京 钱晓明. 织物的防刺机制及刀具形状对防刺性能的影响[J]. 纺织学报, 2017, 38(08): 55-61.
[9] 汪泽幸 蒋金华 陈南梁 袁庆锋 . 机织物增强双层柔性复合材料拉伸异向性能及其失效准则[J]. 纺织学报, 2014, 35(8): 38-0.
[10] 李宁 宋广礼 刘梁森 张宇群 姜亚明. 芳纶针织物的防刺性能[J]. 纺织学报, 2014, 35(12): 31-0.
[11] 汪泽幸 蒋金华 陈南梁. 反复加载下机织物增强柔性复合材料的力学行为[J]. 纺织学报, 2014, 35(1): 51-0.
[12] 孔祥勇, 缪旭红. 多轴向经编织物的防刺性能[J]. 纺织学报, 2012, 33(7): 58-63.
[13] 李丽娟;蒋高明;缪旭红. 经编防刺织物的结构与性能[J]. 纺织学报, 2011, 32(4): 48-51.
[14] 朱勇奕;刘晓明;陈南梁. PVC 压延柔性复合材料应力松弛的力学模型[J]. 纺织学报, 2007, 28(11): 36-39.
[15] 练军;顾伯洪;王善元. 织物及其复合材料的弹道冲击性能[J]. 纺织学报, 2006, 27(8): 109-112.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!