纺织学报 ›› 2022, Vol. 43 ›› Issue (02): 19-23.doi: 10.13475/j.fzxb.20210802006

• 纤维材料 • 上一篇    下一篇

高耐热聚酰亚胺纤维的制备及其性能

董晗1,2, 郑森森1,2, 郭涛3, 董杰1,2, 赵昕1,2, 王士华3, 张清华1,2()   

  1. 1.东华大学 材料科学与工程学院, 上海 201620
    2.东华大学 纤维材料改性国家重点实验室, 上海 201620
    3.江苏奥神新材料股份有限公司, 江苏 连云港 222000
  • 收稿日期:2021-08-20 修回日期:2021-11-17 出版日期:2022-02-15 发布日期:2022-03-15
  • 通讯作者: 张清华
  • 作者简介:董晗(1996—),男,博士生。主要研究方向为高耐热聚酰亚胺纤维。
  • 基金资助:
    国家自然科学基金项目(51903038);国家自然科学基金项目(21774019);国家自然科学基金项目(21975040)

Preparation and properties of high heat-resistant polyimide fiber

DONG Han1,2, ZHENG Sensen1,2, GUO Tao3, DONG Jie1,2, ZHAO Xin1,2, WANG Shihua3, ZHANG Qinghua1,2()   

  1. 1. College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
    2. State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai 201620, China
    3. Jiangsu Aoshen Hi-Tech Materials Co., Ltd., Lianyungang, Jiangsu 222000, China
  • Received:2021-08-20 Revised:2021-11-17 Published:2022-02-15 Online:2022-03-15
  • Contact: ZHANG Qinghua

摘要:

为进一步提升聚酰亚胺(PI)纤维的耐热性能,以全刚性的二酐和二胺合成了可纺性良好的聚酰胺酸纺丝液,通过干法纺丝方法以及高温热环化和热牵伸处理制备了力学性能优良的PI纤维,对PI纤维的热性能和机械性能进行分析。结果表明:所制备的PI纤维具有优越的热稳定性,二酐和二胺内部结构中的全刚性链结构苯环密度大,使PI纤维的化学结构稳定;在氮气氛围下,PI纤维质量损失5%和最大质量损失温度分别达600 和649 ℃,PI纤维的拉伸强度为2.1 GPa,在温度为300 ℃分别热老化处理24、48和72 h后,其拉伸强度保持率可分别达到99.8%、87.3%和76.3%;同时,PI纤维具有优异的尺寸稳定性,在50~350 ℃范围内,其热膨胀系数为 -9.1 μm/(m·℃)。

关键词: 聚酰亚胺, 干法纺丝, 高性能纤维, 热稳定性, 热老化实验

Abstract:

In order to further improve the heat resistance of polyimide fibers, the poly (amic acid) solution from fully-rigid dianhydrides and diamines was synthesized. The polyimide fibers were prepared through dry spinning technology for improved mechanical properties, followed by thermal cyclization and drawing progress. The thermal and mechanical properties of the fibers were analyzed. The results show that the thermal stability of polyimide fibers is superior, mainly attributing to the high density of the benzene ring in the internal structure of the dianhydride and diamine. Under nitrogen atmosphere, the 5% weight loss temperature and the maximum decomposition temperature of polyimide fiber reach 600 ℃ and 649 ℃ respectively. The tensile strength of the fiber is 2.1 GPa. After the aging test at 300 ℃ for 24, 48, and 72 h, the retention rates of tensile strengths reach 99.8%, 87.3%, and 76.3% respectively. At the same time, polyimide fiber has excellent dimensional stability, and its thermal expansion coefficient is -9.1 μm/(m·℃) in the range of 50-350 ℃.

Key words: polyimide, dry spinning, high performance fiber, thermal stability, thermal aging test

中图分类号: 

  • TB35

图1

PI纤维在氮气氛围中的热重曲线"

图2

PI纤维热分解过程分析谱图"

图3

PI-7纤维在不同温度下释放气相产物的三维和二维红外谱图"

图4

不同结构PI纤维的热机械性能曲线"

图5

不同结构PI纤维的二维WAXD谱图"

图6

不同结构PI纤维一维WAXD谱图"

图7

不同结构PI纤维力学性能曲线"

表1

几种高性能纤维的力学强度保持率"

纤维名称 24 h 48 h 72 h
PMDA-PDA 73.8 85.2 66.7
Nomex 65.8 63.9 61.2
Kevlar 49 60.4 30.1 10.0
P84 26.5 / /
PI-7 99.8 87.3 76.3
[1] 骆晓蕾, 李紫嫣, 马亚男, 等. 纺织品生态阻燃技术研究进展[J]. 纺织学报, 2021, 42(5): 193-202.
LUO Xiaolei, LI Ziyan, MA Yanan, et al. Progress in ecological flame retardant technology for textiles[J]. Journal of Textile Research, 2021, 42(5): 193-202.
[2] DONG J, FANG Y, GAN F, et al. Enhanced mechanical properties of polyimide composite fibers containing amino functionalized carbon nanotubes[J]. Composites Science and Technology, 2016, 135:137-145.
doi: 10.1016/j.compscitech.2016.09.021
[3] GAN F, DONG J, TANG M, et al. High-tenacity and high-modulus polyimide fibers containing benzimidazole and pyrimidine units[J]. Reactive and Functional Polymers, 2019, 141:112-122.
doi: 10.1016/j.reactfunctpolym.2019.05.005
[4] LI Z, DONG J, HUANG J, et al. Structure and properties of aromatic polyimide fibers fabricated by a novel "reaction-spinning" method[J]. Macromolecular Research, 2019, 28(1): 1-4.
doi: 10.1007/s13233-020-8014-3
[5] JANG Y W, MIN B G, YOON K H. Enhancement in compressive strength and UV ageing-resistance of poly(p-phenylene benzobisoxazole) nanocomposite fiber containing modified polyhedral oligomeric silsesquio-xane[J]. Fibers and Polymers, 2017, 18(3): 575-581.
doi: 10.1007/s12221-017-1080-2
[6] LI X, WU J, TANG C, et al. High temperature resistant polyimide/boron carbide composites for neutron radiation shielding[J]. Composites Part B: Engineering, 2019, 159:355-361.
doi: 10.1016/j.compositesb.2018.10.003
[7] WU Y, CHEN G, FENG C, et al. High Tg and thermo-oxidatively stable thermosetting polyimides derived from a carborane-containing diamine[J]. Macromol Rapid Commun, 2018, 39(21): 1-5.
[8] LEI H, ZHANG M, NIU H, et al. Multilevel structure analysis of polyimide fibers with different chemical constitutions[J]. Polymer, 2018, 149:96-105.
doi: 10.1016/j.polymer.2018.06.067
[9] FANG Y, DONG J, ZHANG D, et al. Preparation of high-performance polyimide fibers via a partial pre-imidization process[J]. Journal of Materials Science, 2018, 54(4): 3619-3631.
doi: 10.1007/s10853-018-3068-8
[10] 郑森森, 郭涛, 董杰, 等. 含咪唑结构高强高模聚酰亚胺纤维的制备及其结构与性能[J]. 纺织学报, 2021, 42(2): 7-11.
ZHENG Sensen, GUO Tao, DONG Jie, et al. Preparation,structure and properties of high-strength high-modulus polyimide fibers containing benzimidazole moiety[J]. Journal of Textile Research, 2021, 42(2): 7-11.
doi: 10.1177/004051757204200102
[11] CEHNG Z Y, JI X, LI S Y, et al. Thermodynamics calculation of the pyrolysis of vegetable oils[J]. Energy Sources, 2004, 26(9): 849-856.
doi: 10.1080/00908310490465902
[12] CHEN M, LIANG B, GUO Y, et al. Pyrolysis mechanism of polyimide containing bio-molecule adenine building block[J]. Polymer Degradation and Stability, 2020, 175:109-124.
[13] LIU X Y, ZHAN M S, WANG K. Thermal properties of the polyimide foam prepared from aromatic dianhydride and isocyanate[J]. High Performance Polymers, 2012, 24(5): 373-378.
doi: 10.1177/0954008312440196
[14] KIM S I, SHIN T J, PYO S M. Structure and properties of rodlike poly(p-phenylene pyromellitimide)s containing short side groups[J]. Polymer, 1999, 40:1603-1610.
doi: 10.1016/S0032-3861(98)00375-9
[1] 朱维维, 管丽媛, 龙家杰, 施楣梧. 超临界CO2流体处理时间对二醋酯纤维结构与性能的影响[J]. 纺织学报, 2021, 42(12): 97-102.
[2] 陈纤, 李猛猛, 赵昕, 董杰, 滕翠青. 纳米芳纶气凝胶纤维的制备与微观结构调控[J]. 纺织学报, 2021, 42(11): 17-23.
[3] 何聚, 刘晓辉, 苏晓伟, 林生根, 任元林. 星型无卤阻燃剂改性粘胶纤维的制备及其性能[J]. 纺织学报, 2021, 42(10): 34-40.
[4] 李凤艳, 叶天宇, 展晓晴, 赵健, 李聃阳, 王瑞. 涤纶与芳纶及超高分子量聚乙烯纤维复合纱防刺织物的制备及其性能[J]. 纺织学报, 2021, 42(07): 82-88.
[5] 王瑞丰, 李敏, 田安丽, 王春霞, 付少海. 分散黄6GSL晶型与其分散体热稳定性的关系[J]. 纺织学报, 2021, 42(05): 96-102.
[6] 杨婷婷, 高远博, 郑毅, 王学利, 何勇. 生物基聚酰胺56纤维的热降解动力学及其热解产物[J]. 纺织学报, 2021, 42(04): 1-7.
[7] 郑森森, 郭涛, 董杰, 王士华, 张清华. 含咪唑结构高强高模聚酰亚胺纤维的制备及其结构与性能[J]. 纺织学报, 2021, 42(02): 7-11.
[8] 刘淑强, 武捷, 吴改红, 阴晓龙, 李甫, 张曼. 纳米SiO2对玄武岩纤维的表面改性[J]. 纺织学报, 2020, 41(12): 37-41.
[9] 温馨, 张须臻, 李勇, 黄文健, 卢晨. 水引发L-丙交酯开环聚合工艺研究[J]. 纺织学报, 2020, 41(12): 21-25.
[10] 董大林, 宾月珍, 蹇锡高. 基于干法纺丝的含二氮杂萘酮结构聚芳醚酮纤维制备及其性能[J]. 纺织学报, 2020, 41(12): 1-6.
[11] 杨雅茹, 沈小军, 唐柏林, 牛梅. 超高分子量聚乙烯纤维的无卤阻燃整理[J]. 纺织学报, 2020, 41(11): 109-115.
[12] 展晓晴, 李凤艳, 赵健, 李海琼. 超高分子量聚乙烯纤维的热力学稳定性能[J]. 纺织学报, 2020, 41(08): 9-14.
[13] 陈立富, 于伟东. 人造金刚石填充聚酰亚胺树脂基复合材料防刺性能[J]. 纺织学报, 2020, 41(05): 38-44.
[14] 朱维维, 蔡冲, 张聪, 龙家杰, 施楣梧. 超临界CO2处理温度对二醋酸纤维结构与性能的影响[J]. 纺织学报, 2020, 41(03): 8-14.
[15] 姜兆辉, 金梦甜, 郭增革, 贾曌, 王其才, 金剑. 聚芳酯纤维的化学稳定性及其腐蚀降解[J]. 纺织学报, 2019, 40(12): 9-15.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 林彬;李哲. 泡泡袖袖山褶皱凸起量的影响因素[J]. 纺织学报, 2009, 30(06): 104 -106 .
[2] 贾庆龙, 焦晓宁, 王忠忠. PVDF静电纺锂电隔膜纤维直径预测模型及优化[J]. 纺织学报, 2012, 33(3): 22 -26 .
[3] 陈仁忠 胡毅 袁菁红 沈桢 陈艳丽 吕慧 何霞. 静电纺MnO2/PAN纳米纤维膜的制备及其催化氧化甲醛性能[J]. 纺织学报, 2015, 36(05): 1 -6 .
[4] 孙悦 范杰 王亮 刘雍. 可穿戴技术在纺织服装中的应用研究进展[J]. 纺织学报, 2018, 39(12): 131 -138 .
[5] 陈悦, 赵永欢, 褚朱丹, 庄志山, 邱琳琳, 杜平凡. 基于碳纤维及其织物的柔性锂电池电极研究进展[J]. 纺织学报, 2019, 40(02): 173 -180 .
[6] 姬长春, 张开源, 王玉栋, 王新厚. 熔喷三维气流场的数值计算与分析[J]. 纺织学报, 2019, 40(08): 175 -180 .
[7] 孙光武, 李杰聪, 辛三法, 王新厚. 基于非牛顿流体本构方程的熔喷纤维直径预测[J]. 纺织学报, 2019, 40(11): 20 -25 .
[8] 甄琪, 张恒, 朱斐超, 史建宏, 刘雍, 张一风. 聚丙烯/聚酯双组分微纳米纤维熔喷非织造材料制备及其性能[J]. 纺织学报, 2020, 41(02): 26 -32 .
[9] 李辉芹, 张楠, 温晓丹, 巩继贤, 赵晓明, 王支帅. 纤维材料降噪结构体的研究进展[J]. 纺织学报, 2020, 41(03): 175 -181 .
[10] 张星, 刘金鑫, 张海峰, 王玉晓, 靳向煜. 防护口罩用非织造滤料的制备技术与研究现状[J]. 纺织学报, 2020, 41(03): 168 -174 .