纺织学报 ›› 2022, Vol. 43 ›› Issue (02): 98-104.doi: 10.13475/j.fzxb.20210802407
朵永超1, 钱晓明1(), 郭寻1, 高龙飞1, 白赫1,2, 赵宝宝3
DUO Yongchao1, QIAN Xiaoming1(), GUO Xun1, GAO Longfei1, BAI He1,2, ZHAO Baobao3
摘要:
针对中空桔瓣型超细纤维非织造布开纤率低、悬垂性差的问题,以高收缩聚酯(HSPET)、聚酰胺(PA6)为原料,通过双组分纺粘水刺技术制备了不同面密度的HSPET/PA6超细纤维非织造布,分析了热收缩处理对非织造布开纤率、悬垂性、柔软度、透气性、过滤效率以及力学性能的影响。结果表明:当水刺压力一定时,与PET/PA6非织造布相比,HSPET/PA6非织造布的开纤率提高48.1%;经热收缩处理后,HSPET/PA6非织造布收缩率可达到20.31%,热收缩可促进纤维裂离,使非织造布内部结构相对蓬松,改善其悬垂性;HSPET/PA6非织造布的过滤效率随着开纤率的增加而增加,当其面密度为140 g/m2时,对于粒径大于或等于1.5 μm颗粒的过滤效率接近于100%,但经热收缩处理后HSPET/PA6非织造布过滤效率有所下降。
中图分类号:
[1] | 卢志敏, 钱晓明. 桔瓣型双组分纺粘法非织造布的开纤方法及开纤效果评价[J]. 现代纺织技术, 2011(5): 62-64. |
LU Zhimin, QIAN Xiaoming. Evaluation of the splitting method and splitting effect of segmented-pie bicomponent spunbond nonwovens[J]. Advanced Textile Technology, 2011(5): 62-64. | |
[2] | 殷保璞, 靳向煜. 超细纤维水刺非织造布的纤维裂离机理及性能[J]. 东华大学学报(自然科学版), 2003, 29(3): 55-58. |
YIN Baopu, JIN Xiangyu. Principle of fiber being splited and performance of microfiber spunlaced nonwoven[J]. Journal of Donghua University(Nature Science), 2003, 29(3): 55-58. | |
[3] |
ZHANG Heng, QIAN Xiaoming, ZHEN Qi, et al. Research on structure characteristics and filtration performances of PET-PA6 hollow segmented-pie bicomponent spunbond nonwovens fibrillated by hydro-entangle method[J]. Journal of Industrial Textiles, 2015, 45:48-65.
doi: 10.1177/1528083714521073 |
[4] | 张恒, 甄琪, 钱晓明, 等. 聚酯/聚酰胺中空橘瓣型超细纤维非织造材料的孔径预测[J]. 纺织学报, 2018, 39(1): 56-61. |
ZHANG Heng, ZHEN Qi, QIAN Xiaoming, et al. Prediction of pore sizes of polyester/polyamide 6 hollow segmented-pie microfiber nonwovens[J]. Journal of Textile Research, 2018, 39(1): 56-61. | |
[5] |
XU Xianlin, ZHANG Fang, WANG Wei, et al. Development of amino acid-modified PET/PA6 segmented pie bicomponent spunbonded microfiber nonwoven for bilirubin affinity adsorption[J]. Fibers and Polymers, 2017, 18(4): 633-640.
doi: 10.1007/s12221-017-6824-5 |
[6] | 王敏, 韩建, 于斌, 等. 双组分橘瓣型纺粘水刺材料的过滤和力学性能[J]. 纺织学报, 2016, 37(9): 16-20. |
WANG Min, HAN Jian, YU Bin, et al. Filtration and mechanical performance of orange petal shapebicomponent spunbond-spunlace nonwoven materials[J]. Journal of Textile Research, 2016, 37(9): 16-20. | |
[7] | 刘凡, 钱晓明, 赵宝宝, 等. 柔软处理对涤/锦纶6中空桔瓣型超细纤维非织造布性能的影[J]. 纺织学报, 2018, 39(3): 114-119. |
LIU Fan, QIAN Xiaoming, ZHAO Baobao, et al. Influence of softening treatment on properties of polyester/polyamide 6 hollow segmented-pie ultrafine fiber nonwovens[J]. Journal of Textile Research, 2018, 39(3): 114-119. | |
[8] |
PRAHSARN C, MATSUBARA A, MOTOMURA S, et al. Development of bicomponent spunbond nonwoven webs consisting of ultra-fine splitted fibers[J]. International Polymer Processing, 2008, 23(2): 178-182.
doi: 10.3139/217.2037 |
[9] |
AYAD E, CAYLA A, RAULT F, et al. Effect of viscosity ratio of two immiscible polymers on morphology in bicomponent melt spinning fibers[J]. Advances in Polymer Technology, 2018, 37(4): 1134-1141.
doi: 10.1002/adv.2018.37.issue-4 |
[10] |
PRAHSARN C, KLINSUKHON W, PADEE S, et al. Hollow segmented-pie PLA/PBS and PLA/PP bicomponent fibers: an investigation on fiber properties and splittability[J]. Journal of Materials Science, 2016, 51(24): 10910-10916.
doi: 10.1007/s10853-016-0302-0 |
[11] | DUO Yongchao, QIAN Xiaoming, ZHAO Baobao, et al. Improving hygiene performance of microfiber synthetic leather base by mixing polyhydroxybutyrate nanofiber[J]. Journal of Engineered Fibers and Fabrics, 2019, 14:1-7. |
[12] | 朵永超, 钱晓明, 赵宝宝, 等. 超细纤维合成革基布的制备及其性能[J]. 纺织学报, 2020, 41(9): 81-87. |
DUO Yongchao, QIAN Xiaoming, ZHAO Baobao, et al. Preparation and properties of micro/nano microfiber synthetic leather base[J]. Journal of Textile Research, 2020, 41(9): 81-87. | |
[13] | 赵宝宝, 钱幺, 钱晓明, 等. 梯度结构双组分纺粘水刺非织造材料的制备及其性能[J]. 纺织学报, 2018, 39(5): 61-66. |
ZHAO Baobao, QIAN Yao, QIAN Xiaoming, et al. Preparation and properties of bicomponent spunbond-spunlace nonwoven materials with gradient structure[J]. Journal of Textile Research, 2018, 39(5): 61-66. | |
[14] |
HOLLOWELL K B, ANANTHARAMAIAH N, POURDEYHIMI B. Hybrid mixed media nonwovens composed of macrofibers and microfibers: part I: three-layer segmented pie configuration[J]. Journal of The Textile Institute, 2013, 104(9): 972-979.
doi: 10.1080/00405000.2013.767430 |
[15] | 朵永超, 钱晓明, 赵宝宝, 等. 聚酯-聚酰胺6中空桔瓣超细纤维/Lyocell纤维非织造复合材料的制备与性能[J]. 复合材料学报, 2021, 38(4): 1231-1241. |
DUO Yongchao, QIAN Xiaoming, ZHAO Baobao, et al. Preparation and properties of PET-PA6 hollow segmented-pie microfiber/Lyocellfiber non-woven composites[J]. Acta Materiae Compositae Sinica, 2021, 38(4): 1231-1241. | |
[16] | 张程, 周静宜, 王锐, 等. COPEET/HSPET并列复合纤维结晶和热收缩性能的研究[J]. 合成纤维工业, 2015, 38(1): 24-28. |
ZHANG Cheng, ZHOU Jingyi, WANG Rui, et al. Crystallinity and thermal shrinkage properties of COPEET/HSPET side-by-side bicomponent fiber[J]. China Synthetic Fiber Industry, 2015, 38(1): 24-28. |
[1] | 孙婷, 张如全, 唐子杰, 涂虎, 胡敏. 全棉水刺非织造布的低碳节能冷堆处理工艺[J]. 纺织学报, 2022, 43(01): 89-95. |
[2] | 高猛, 王增元, 漏琦伟, 陈钢进. 电晕驻极熔喷聚丙烯驻极体非织造布的电荷捕获特性[J]. 纺织学报, 2021, 42(09): 52-58. |
[3] | 张雪飞, 李婷婷, 许炳铨, 林佳弘, 楼静文. 用低温界面聚合法制备多功能核壳结构热电织物[J]. 纺织学报, 2021, 42(02): 174-179. |
[4] | 王秋萍, 张瑞萍, 李成红, 张葛成. 导电涤纶非织造布的制备及其性能[J]. 纺织学报, 2020, 41(10): 116-121. |
[5] | 夏磊, 程博闻, 西鹏, 庄旭品, 赵义侠, 刘亚, 康卫民, 任元林. 闪蒸纺纳微米纤维非织造技术的研究进展[J]. 纺织学报, 2020, 41(08): 166-171. |
[6] | 周惠林, 杨卫民, 李好义. 医用口罩过滤材料的研究进展[J]. 纺织学报, 2020, 41(08): 158-165. |
[7] | 吕汉明, 王翔宇, 刘凤坤. 基于介电谱的醋酸酯水刺非织造布含水率估算[J]. 纺织学报, 2020, 41(06): 55-60. |
[8] | 苗苗, 王晓旭, 王迎, 吕丽华, 魏春艳. 氧化石墨烯接枝聚丙烯非织造布的制备及其抗静电性[J]. 纺织学报, 2019, 40(11): 125-130. |
[9] | 王璐, 丁笑君, 夏馨, 王虹, 周小红. SiO2气凝胶/芳纶非织造布复合织物的防护功能[J]. 纺织学报, 2019, 40(10): 79-84. |
[10] | 柳健, 毛金露, 彭丽, 蔡凌云, 郑旭明, 张富山. 聚乙烯-聚丙烯非织造布亲水油剂的性能及其调控[J]. 纺织学报, 2019, 40(09): 114-121. |
[11] | 周颖, 王闯, 朱佳颖, 黄林汐, 杨丽丽, 余厚咏, 姚菊明, 金万慧. 非织造布表面形貌可控氧化锌纳米粒子的构筑[J]. 纺织学报, 2019, 40(09): 35-41. |
[12] | 周铃, 靳向煜. 热气流固结纤维网串珠结构可控性及其结晶动力学[J]. 纺织学报, 2019, 40(08): 27-34. |
[13] | 陈阳, 辛斌杰, 邓娜. 基于GHM多小波变换的非织造布多焦面图像融合[J]. 纺织学报, 2019, 40(06): 125-132. |
[14] | 王宗乾, 王邓峰, 王明荣, 沈皆亮. 抗静电热熔胶的制备及其在覆膜非织造布中的应用[J]. 纺织学报, 2019, 40(04): 96-102. |
[15] | 王亚 黄菁菁 张如全 . 艾蒿油-壳聚糖抗菌微胶囊的制备及其应用[J]. 纺织学报, 2018, 39(10): 99-103. |
|