纺织学报 ›› 2022, Vol. 43 ›› Issue (02): 98-104.doi: 10.13475/j.fzxb.20210802407

• 纺织工程 • 上一篇    下一篇

中空桔瓣型高收缩聚酯/聚酰胺6超细纤维非织造布的制备及其性能

朵永超1, 钱晓明1(), 郭寻1, 高龙飞1, 白赫1,2, 赵宝宝3   

  1. 1.天津工业大学 纺织科学与工程学院, 天津 300387
    2.天津师范大学 物理与材料科学学院,天津 300387
    3.安徽工程大学 纺织服装学院, 安徽 芜湖 241000
  • 收稿日期:2021-08-02 修回日期:2021-11-17 出版日期:2022-02-15 发布日期:2022-03-15
  • 通讯作者: 钱晓明
  • 作者简介:朵永超(1992—),男,博士生。主要研究方向为新型非织造材料制备技术。
  • 基金资助:
    国家自然科学基金项目(U1607117);天津市应用基础与前沿技术计划项目(16JCZDJC36400);天津市科技计划项目(17PTSYJC00150)

Preparation and properties of hollow pie-segmented high shrinkage polyester/polyamide 6 microfiber nonwovens

DUO Yongchao1, QIAN Xiaoming1(), GUO Xun1, GAO Longfei1, BAI He1,2, ZHAO Baobao3   

  1. 1. School of Textiles Science and Engineering, Tiangong University, Tianjin 300387, China
    2. School of Physics and Materials Science, Tianjin Normal University, Tianjin 300387, China
    3. School of Textile and Garment, Anhui Polytechnic University, Wuhu, Anhui 241000, China
  • Received:2021-08-02 Revised:2021-11-17 Published:2022-02-15 Online:2022-03-15
  • Contact: QIAN Xiaoming

摘要:

针对中空桔瓣型超细纤维非织造布开纤率低、悬垂性差的问题,以高收缩聚酯(HSPET)、聚酰胺(PA6)为原料,通过双组分纺粘水刺技术制备了不同面密度的HSPET/PA6超细纤维非织造布,分析了热收缩处理对非织造布开纤率、悬垂性、柔软度、透气性、过滤效率以及力学性能的影响。结果表明:当水刺压力一定时,与PET/PA6非织造布相比,HSPET/PA6非织造布的开纤率提高48.1%;经热收缩处理后,HSPET/PA6非织造布收缩率可达到20.31%,热收缩可促进纤维裂离,使非织造布内部结构相对蓬松,改善其悬垂性;HSPET/PA6非织造布的过滤效率随着开纤率的增加而增加,当其面密度为140 g/m2时,对于粒径大于或等于1.5 μm颗粒的过滤效率接近于100%,但经热收缩处理后HSPET/PA6非织造布过滤效率有所下降。

关键词: 高收缩聚酯/聚酰胺6超细纤维, 中空桔瓣型纤维, 纺粘水刺技术, 热收缩, 非织造布

Abstract:

Aiming at the problems of low fiber splitting rate and poor drapability of hollow pie-segmented microfiber nonwoven, high shrinkage polyester/polyamide 6 microfiber nonwovens with different areal densities were prepared by bicomponent spunbond spunlace technology with high shrinkage polyester (HSPET) and polyamide (PA6) as raw materials. The effect of heat shrinkage treatment on fiber splitting rate, drapability, softness, air permeability, filtration efficiency and mechanical properties of the nonwovens were analyzed. The results show that when the spunlace pressure was constant, the fiber splitting rate of the HSPET/PA6 nonwoven fabric is increased by 48.1% compared with that of PET/PA6 nonwoven. After heat shrinkage treatment, the shrinkage rate of HSPET/PA6 nonwoven reaches 20.31%. Heat shrinkage promotes the fiber splitting, resulting in a relatively fluffy internal structure of the nonwoven, offering drapability improvement. The filtration efficiency of HSPET/PA6 nonwovens was increased as the increased fiber splitting rate. The filtration efficiency of HSPET/PA6 nonwovens was close to 100% for particles with size greater than or equal to 1.5 μm when the areal density of the nonwoven was 140 g/m2, but the filtration efficiency of HSPET/PA6 nonwovens was reduced after heat shrinkage treatment.

Key words: high-shrinkage polyester/polyamide 6 microfiber, hollow pie-segmented fiber, spunbond spunlace technology, heat shrinkage, nonwovens

中图分类号: 

  • TS174.8

图1

HSPET/PA6中空桔瓣型复合纤维SEM照片"

图2

HSPET/PA6中空桔瓣型复合纤维直径分布"

表1

中空桔瓣型复合纤维的基本性能"

试样名称 收缩率/% 断裂强
力/cN
断裂伸
长率/%
沸水 干热
HSPET/PA6 12.27 10.57 5.46 80.42
PET/PA6 1.23 1.09 6.74 61.47

图3

热收缩处理前后HSPET/PA6非织造布的SEM照片"

图4

不同面密度的非织造布的开纤率"

表2

双组分纺粘水刺非织造布的收缩率"

面密度/
(g·m-2)
沸水收缩率/% 干热收缩率/%
PET/PA6 HSPET/PA6 PET/PA6 HSPET/PA6
80 1.234 20.31 1.056 16.29
120 1.402 20.18 1.034 16.25
140 1.561 19.67 1.214 15.61

图5

非织造布的孔隙率及透气性"

图6

不同面密度的非织造布的过滤效率"

图7

不同面密度的非织造布的过滤阻力"

图8

不同面密度的非织造布的柔软度"

表3

不同面密度的非织造布的悬垂性"

试样名称 80 g/m2 120 g/m2 140 g/m2
静态悬垂系数 动态悬垂系数 静态悬垂系数 动态悬垂系数 静态悬垂系数 动态悬垂系数
HSPET/PA6 65.48 79.34 80.34 86.99 85.52 90.22
干热收缩HSPET/PA6 73.02 82.59 84.14 87.45 89.95 92.74
沸水收缩HSPET/PA6 62.00 72.36 74.20 79.92 78.14 83.23
PET/PA6 73.80 82.70 85.69 89.43 91.56 94.57

表4

不同面密度的非织造布的力学性能"

试样名称 80 g/m2 120 g/m2 140 g/m2
断裂强力/N 断裂伸长率/% 断裂强力/N 断裂伸长率/% 断裂强力/N 断裂伸长率/%
纵向 横向 纵向 横向 纵向 横向 纵向 横向 纵向 横向 纵向 横向
HSPET/PA6 361.0 154.0 48.45 55.62 548.3 270.0 54.35 64.55 621.1 336.5 60.67 70.23
干热收缩HSPET/PA6 421.3 176.3 46.15 54.13 623.4 292.1 52.92 62.75 721.4 372.9 53.47 68.25
沸水收缩HSPET/PA6 408.3 206.0 53.35 62.85 611.3 289.3 58.95 68.60 675.2 374.5 61.88 72.32
PET/PA6 378.5 147.3 41.34 53.19 572.3 273.7 46.41 60.95 643.2 304.5 45.79 64.32
[1] 卢志敏, 钱晓明. 桔瓣型双组分纺粘法非织造布的开纤方法及开纤效果评价[J]. 现代纺织技术, 2011(5): 62-64.
LU Zhimin, QIAN Xiaoming. Evaluation of the splitting method and splitting effect of segmented-pie bicomponent spunbond nonwovens[J]. Advanced Textile Technology, 2011(5): 62-64.
[2] 殷保璞, 靳向煜. 超细纤维水刺非织造布的纤维裂离机理及性能[J]. 东华大学学报(自然科学版), 2003, 29(3): 55-58.
YIN Baopu, JIN Xiangyu. Principle of fiber being splited and performance of microfiber spunlaced nonwoven[J]. Journal of Donghua University(Nature Science), 2003, 29(3): 55-58.
[3] ZHANG Heng, QIAN Xiaoming, ZHEN Qi, et al. Research on structure characteristics and filtration performances of PET-PA6 hollow segmented-pie bicomponent spunbond nonwovens fibrillated by hydro-entangle method[J]. Journal of Industrial Textiles, 2015, 45:48-65.
doi: 10.1177/1528083714521073
[4] 张恒, 甄琪, 钱晓明, 等. 聚酯/聚酰胺中空橘瓣型超细纤维非织造材料的孔径预测[J]. 纺织学报, 2018, 39(1): 56-61.
ZHANG Heng, ZHEN Qi, QIAN Xiaoming, et al. Prediction of pore sizes of polyester/polyamide 6 hollow segmented-pie microfiber nonwovens[J]. Journal of Textile Research, 2018, 39(1): 56-61.
[5] XU Xianlin, ZHANG Fang, WANG Wei, et al. Development of amino acid-modified PET/PA6 segmented pie bicomponent spunbonded microfiber nonwoven for bilirubin affinity adsorption[J]. Fibers and Polymers, 2017, 18(4): 633-640.
doi: 10.1007/s12221-017-6824-5
[6] 王敏, 韩建, 于斌, 等. 双组分橘瓣型纺粘水刺材料的过滤和力学性能[J]. 纺织学报, 2016, 37(9): 16-20.
WANG Min, HAN Jian, YU Bin, et al. Filtration and mechanical performance of orange petal shapebicomponent spunbond-spunlace nonwoven materials[J]. Journal of Textile Research, 2016, 37(9): 16-20.
[7] 刘凡, 钱晓明, 赵宝宝, 等. 柔软处理对涤/锦纶6中空桔瓣型超细纤维非织造布性能的影[J]. 纺织学报, 2018, 39(3): 114-119.
LIU Fan, QIAN Xiaoming, ZHAO Baobao, et al. Influence of softening treatment on properties of polyester/polyamide 6 hollow segmented-pie ultrafine fiber nonwovens[J]. Journal of Textile Research, 2018, 39(3): 114-119.
[8] PRAHSARN C, MATSUBARA A, MOTOMURA S, et al. Development of bicomponent spunbond nonwoven webs consisting of ultra-fine splitted fibers[J]. International Polymer Processing, 2008, 23(2): 178-182.
doi: 10.3139/217.2037
[9] AYAD E, CAYLA A, RAULT F, et al. Effect of viscosity ratio of two immiscible polymers on morphology in bicomponent melt spinning fibers[J]. Advances in Polymer Technology, 2018, 37(4): 1134-1141.
doi: 10.1002/adv.2018.37.issue-4
[10] PRAHSARN C, KLINSUKHON W, PADEE S, et al. Hollow segmented-pie PLA/PBS and PLA/PP bicomponent fibers: an investigation on fiber properties and splittability[J]. Journal of Materials Science, 2016, 51(24): 10910-10916.
doi: 10.1007/s10853-016-0302-0
[11] DUO Yongchao, QIAN Xiaoming, ZHAO Baobao, et al. Improving hygiene performance of microfiber synthetic leather base by mixing polyhydroxybutyrate nanofiber[J]. Journal of Engineered Fibers and Fabrics, 2019, 14:1-7.
[12] 朵永超, 钱晓明, 赵宝宝, 等. 超细纤维合成革基布的制备及其性能[J]. 纺织学报, 2020, 41(9): 81-87.
DUO Yongchao, QIAN Xiaoming, ZHAO Baobao, et al. Preparation and properties of micro/nano microfiber synthetic leather base[J]. Journal of Textile Research, 2020, 41(9): 81-87.
[13] 赵宝宝, 钱幺, 钱晓明, 等. 梯度结构双组分纺粘水刺非织造材料的制备及其性能[J]. 纺织学报, 2018, 39(5): 61-66.
ZHAO Baobao, QIAN Yao, QIAN Xiaoming, et al. Preparation and properties of bicomponent spunbond-spunlace nonwoven materials with gradient structure[J]. Journal of Textile Research, 2018, 39(5): 61-66.
[14] HOLLOWELL K B, ANANTHARAMAIAH N, POURDEYHIMI B. Hybrid mixed media nonwovens composed of macrofibers and microfibers: part I: three-layer segmented pie configuration[J]. Journal of The Textile Institute, 2013, 104(9): 972-979.
doi: 10.1080/00405000.2013.767430
[15] 朵永超, 钱晓明, 赵宝宝, 等. 聚酯-聚酰胺6中空桔瓣超细纤维/Lyocell纤维非织造复合材料的制备与性能[J]. 复合材料学报, 2021, 38(4): 1231-1241.
DUO Yongchao, QIAN Xiaoming, ZHAO Baobao, et al. Preparation and properties of PET-PA6 hollow segmented-pie microfiber/Lyocellfiber non-woven composites[J]. Acta Materiae Compositae Sinica, 2021, 38(4): 1231-1241.
[16] 张程, 周静宜, 王锐, 等. COPEET/HSPET并列复合纤维结晶和热收缩性能的研究[J]. 合成纤维工业, 2015, 38(1): 24-28.
ZHANG Cheng, ZHOU Jingyi, WANG Rui, et al. Crystallinity and thermal shrinkage properties of COPEET/HSPET side-by-side bicomponent fiber[J]. China Synthetic Fiber Industry, 2015, 38(1): 24-28.
[1] 孙婷, 张如全, 唐子杰, 涂虎, 胡敏. 全棉水刺非织造布的低碳节能冷堆处理工艺[J]. 纺织学报, 2022, 43(01): 89-95.
[2] 高猛, 王增元, 漏琦伟, 陈钢进. 电晕驻极熔喷聚丙烯驻极体非织造布的电荷捕获特性[J]. 纺织学报, 2021, 42(09): 52-58.
[3] 张雪飞, 李婷婷, 许炳铨, 林佳弘, 楼静文. 用低温界面聚合法制备多功能核壳结构热电织物[J]. 纺织学报, 2021, 42(02): 174-179.
[4] 王秋萍, 张瑞萍, 李成红, 张葛成. 导电涤纶非织造布的制备及其性能[J]. 纺织学报, 2020, 41(10): 116-121.
[5] 夏磊, 程博闻, 西鹏, 庄旭品, 赵义侠, 刘亚, 康卫民, 任元林. 闪蒸纺纳微米纤维非织造技术的研究进展[J]. 纺织学报, 2020, 41(08): 166-171.
[6] 周惠林, 杨卫民, 李好义. 医用口罩过滤材料的研究进展[J]. 纺织学报, 2020, 41(08): 158-165.
[7] 吕汉明, 王翔宇, 刘凤坤. 基于介电谱的醋酸酯水刺非织造布含水率估算[J]. 纺织学报, 2020, 41(06): 55-60.
[8] 苗苗, 王晓旭, 王迎, 吕丽华, 魏春艳. 氧化石墨烯接枝聚丙烯非织造布的制备及其抗静电性[J]. 纺织学报, 2019, 40(11): 125-130.
[9] 王璐, 丁笑君, 夏馨, 王虹, 周小红. SiO2气凝胶/芳纶非织造布复合织物的防护功能[J]. 纺织学报, 2019, 40(10): 79-84.
[10] 柳健, 毛金露, 彭丽, 蔡凌云, 郑旭明, 张富山. 聚乙烯-聚丙烯非织造布亲水油剂的性能及其调控[J]. 纺织学报, 2019, 40(09): 114-121.
[11] 周颖, 王闯, 朱佳颖, 黄林汐, 杨丽丽, 余厚咏, 姚菊明, 金万慧. 非织造布表面形貌可控氧化锌纳米粒子的构筑[J]. 纺织学报, 2019, 40(09): 35-41.
[12] 周铃, 靳向煜. 热气流固结纤维网串珠结构可控性及其结晶动力学[J]. 纺织学报, 2019, 40(08): 27-34.
[13] 陈阳, 辛斌杰, 邓娜. 基于GHM多小波变换的非织造布多焦面图像融合[J]. 纺织学报, 2019, 40(06): 125-132.
[14] 王宗乾, 王邓峰, 王明荣, 沈皆亮. 抗静电热熔胶的制备及其在覆膜非织造布中的应用[J]. 纺织学报, 2019, 40(04): 96-102.
[15] 王亚 黄菁菁 张如全 . 艾蒿油-壳聚糖抗菌微胶囊的制备及其应用[J]. 纺织学报, 2018, 39(10): 99-103.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 王建坤, 蒋晓东, 郭晶, 杨连贺. 功能化氧化石墨烯吸附材料的研究进展[J]. 纺织学报, 2020, 41(04): 167 -173 .
[2] 骆晓蕾, 刘琳, 姚菊明. 纯生物质纤维素气凝胶的制备及其阻燃性能[J]. 纺织学报, 2022, 43(01): 1 -8 .
[3] 李龙龙, 魏朋, 吴萃霞, 闫金飞, 娄贺娟, 张一风, 夏于旻, 王燕萍, 王依民. 基于对羟基苯丙酸的生物基液晶共聚酯纤维的合成与性能[J]. 纺织学报, 2022, 43(01): 9 -14 .
[4] 赵雅捷, 刘莉, 李依萌. 黑天鹅[J]. 纺织学报, 2022, 43(01): 217 .
[5] 赵雅捷, 刘莉. 太阳马戏团[J]. 纺织学报, 2022, 43(01): 218 .
[6] 匡丽赟, 李娜娜. 华彩[J]. 纺织学报, 2021, 42(11): 207 .
[7] 魏娜娜, 刘碟, 马政, 焦晨璐. 纤维素/壳聚糖磁性气凝胶的冻融法制备及其对染料吸附性能[J]. 纺织学报, 2022, 43(02): 53 -60 .
[8] 王锐, 刘彦麟, 刘蕴钰, 顾伟文, 刘紫灵, 魏建斐. 以聚对苯二甲酸乙二醇酯为前驱体的碳点制备及其应用[J]. 纺织学报, 2022, 43(02): 10 -18 .
[9] 史晟, 王彦, 李飞, 唐建东, 高翔宇, 侯文生, 郭红, 王淑花, 姬佳奇. 草酸稀溶液高效分离废旧聚酯/棉混纺织物[J]. 纺织学报, 2022, 43(02): 140 -148 .
[10] 陈咏, 乌婧, 王朝生, 潘小虎, 李乃祥, 戴钧明, 王华平. 生物可降解聚己二酸-对苯二甲酸丁二醇酯纤维的制备及其环境降解性能[J]. 纺织学报, 2022, 43(02): 37 -43 .