纺织学报 ›› 2022, Vol. 43 ›› Issue (10): 10-15.doi: 10.13475/j.fzxb.20210803807

• 纤维材料 • 上一篇    下一篇

后加工中热处理张力变化对高模低收缩涤纶工业丝结构与性能影响

陈康1,2, 陈高峰3, 王群3, 王刚3, 张玉梅2(), 王华平2   

  1. 1.浙江理工大学 纺织纤维材料与加工技术国家地方联合工程实验室, 浙江 杭州 310018
    2.东华大学 纤维材料改性国家重点实验室, 上海 201620
    3.浙江尤夫高新纤维股份有限公司, 浙江 湖州 313017
  • 收稿日期:2021-08-06 修回日期:2022-03-23 出版日期:2022-10-15 发布日期:2022-10-28
  • 通讯作者: 张玉梅
  • 作者简介:陈康(1993—),男,讲师,博士。主要研究方向为涤纶工业丝服役特性及其构效关系。
  • 基金资助:
    国家重点研发计划项目(2016YFB0303004);中国纺织工业联合会科技指导性项目(2021003)

Influence of heat-treatment tension in post-processing on structural properties of high modulus low shrinkage industrial polyester fibers

CHEN Kang1,2, CHEN Gaofeng3, WANG Qun3, WANG Gang3, ZHANG Yumei2(), WANG Huaping2   

  1. 1. State-Locality Joint Engineering Laboratory of Textile Fiber Materials & Processing Technology, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
    2. State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai 201620, China
    3. Zhejiang Unifull Industrial Fiber Co., Ltd., Huzhou, Zhejiang 313017, China
  • Received:2021-08-06 Revised:2022-03-23 Published:2022-10-15 Online:2022-10-28
  • Contact: ZHANG Yumei

摘要:

针对后加工热处理过程中高模低收缩型(HMLS)涤纶工业丝受热引起性能变化的问题,分别将HMLS涤纶工业丝置于150 ℃不同预加张力(0~0.10 cN/dtex)条件下热处理5 min,分析热处理前后样品的构象变化,阐明其性能调控的结构因素。结果表明:随着预加张力的减小,HMLS涤纶工业丝的断裂强度略有减小,初始模量和5%形变下的断裂强度明显降低,而断裂伸长率明显增大;热处理主要影响非晶区的结构变化,导致HMLS涤纶工业丝的非晶区取向变低、反式构象含量变小、片晶长周期变小以及非晶区厚度变小;可通过施加一定的预加张力有效抵消HMLS涤纶工业丝在后加工中受热时的收缩应力,从而降低非晶区分子链的运动能力,使得力学性能及非晶区结构变化幅度减小。

关键词: 高模低收缩型涤纶工业丝, 热处理, 热处理张力, 微观结构, 力学性能

Abstract:

This research investigates the influence of heat-treatment tension on structural properties of high modulus low shrinkage (HMLS) industrial polyester fibers in post-processing. HMLS industrial polyester fibers was subjected to heat treatment with various tensions (0-0.10 cN/dtex) at 150 ℃ for 5 min. The conformational changes of the samples before and after the heat treatment were analyzed, and the structural factors regulating their properties were discussed. The results show that with the decrease of pre-tension, the breaking strength remains basically unchanged, the tenacity decreases slightly, the initial modulus and the tenacity at the specific elongation of 5.0% decreased obviously, and ultimate elongation increased significantly. The microstructure changes caused by the heat-treatment mainly occur in the amorphous chains, causing lower orientation in the amorphous region, lower trans conformation content, smaller lamellar long period and smaller amorphous thickness. The presence of pre-tension can effectively offset the shrinkage stress of the fiber, decreasing the mobility of molecular chains in the amorphous region, and the degree of mechanical properties and structure changes in the amorphous region is reduced.

Key words: high modulus low shrinkage industrial polyester fiber, heat treatment process, heat-treatment tension, microstructure, mechanical property

中图分类号: 

  • TQ341.5

图1

不同热处理张力下HMLS工业丝的强度-伸长率曲线"

表1

不同热处理HMLS力学性能参数"

样品
编号
断裂
强力/
N
断裂
强度/
(cN·
dtex-1)
断裂
伸长
率/%
初始
模量/
(cN·
dtex-1)
L5/
(cN·
dtex-1)
E4/
%
HMLS 83.5 7.6 11.4 110.7 3.8 5.3
HMLS-1 82.5 7.0 15.0 75.2 1.7 9.6
HMLS-2 81.9 7.1 14.4 76.6 1.9 9.0
HMLS-3 81.7 7.1 14.4 78.0 2.0 8.7
HMLS-4 80.7 7.1 13.8 79.1 2.2 8.0
HMLS-5 81.7 7.3 12.6 89.5 2.7 6.9

表2

不同热处理HMLS的力学性能变化率"

样品
编号
变化率/%
断裂
强力
断裂
强度
断裂伸
长率
初始
模量
L5 E4
HMLS-1 -1.2 -8.2 31.6 -32.1 -54.7 92.5
HMLS-2 -1.9 -6.9 26.3 -30.8 -50.7 81.1
HMLS-3 -2.2 -5.8 26.3 -29.5 -48.2 62.3
HMLS-4 -3.4 -6.2 21.1 -28.5 -41.5 64.2
HMLS-5 -2.2 -4.4 10.5 -19.1 -28.0 30.2

图2

不同热处理张力下HMLS工业丝的热收缩率及线密度变化率"

图3

不同热处理张力获得的HMLS工业丝的WAXS图"

图4

不同热处理预加张力HMLS工业丝的一维积分曲线"

表3

不同热处理张力条件下HMLS工业丝超分子结构参数"

样品
编号
结晶度/
%
(010)
晶粒
尺寸/
nm
(10)
晶粒
尺寸/
nm
双折
射率
n)
晶区取
向度
(fc)
非晶区
取向度
(fa)
HMLS 63 5.2 3.1 0.204 0.94 0.72
HMLS-1 62 5.3 3.1 0.196 0.93 0.66
HMLS-2 63 5.3 2.9 0.198 0.93 0.68
HMLS-3 62 5.3 2.9 0.198 0.93 0.68
HMLS-4 63 5.3 2.9 0.200 0.95 0.67
HMLS-5 62 5.2 2.9 0.204 0.95 0.71

图5

不同热处理张力HMLS工业丝的SAXS图"

表4

不同热处理张力HMLS工业丝的SAXS结构参数"

样品
编号
长周期/
nm
片晶厚
度/nm
非晶区厚
度/nm
片晶直
径/nm
片晶倾斜
角/(°)
HMLS 13.9 7.0 6.9 9.05 41.3
HMLS-1 13.1 6.6 6.5 9.43 39.9
HMLS-2 13.3 6.7 6.6 9.37 41.0
HMLS-3 13.3 6.8 6.5 9.25 40.6
HMLS-4 13.4 6.8 6.6 9.31 41.0
HMLS-5 13.7 7.0 6.7 9.19 41.0

图6

不同热处理张力HMLS工业丝的DMA测试结果"

图7

不同热处理张力HMLS工业丝的红外光谱测试结果"

[1] 陈康, 蒋权, 姬洪, 等. 高强型聚酯工业丝在不同温度下的蠕变断裂机制[J]. 纺织学报, 2020, 41(11): 6-14.
CHEN Kang, JIANG Quan, JI Hong, et al. Temperaure related creep rupture mechanism of high-tenacity polyester industrial fiber[J]. Journal of Textile Reseearch, 2020, 41(11): 6-14.
[2] 欧桂清, 孟静华. 涤纶工业长丝耐湿热性能的研究[J]. 合成纤维, 1993, 22(4): 17-19.
OU Guiqing, MENG Jinghua. Research on heat and moisture resistance of polyester industrial filament[J]. Synthetic Fiber in China, 1993, 22(4): 17-19.
[3] 李鑫. 轮胎用聚酯工业丝的性能研究[J]. 橡胶工业, 2004, 51(9): 537-540.
LI Xin. Study on the properties of polyester industrial yarn for tires[J]. China Rubber Industry, 2004, 51(9): 537-540.
[4] 邹家熊, 于金超, 张烨, 等. 高强低伸型聚酯工业丝受热条件下的应用特性变化[J]. 合成纤维, 2019, 48(2): 11-15.
ZOU Jiaxiong, YU Jinchao, ZHANG Ye, et al. Application characteristics of high strength and low stretch polyester industrial yarn under heating conditions[J]. Synthetic Fiber in China, 2019, 48(2): 11-15.
[5] 周正华, 王希岳. 涤纶工业用丝的尺寸稳定性及力学松驰[J]. 合成技术及应用, 1998, 13(3): 13-18.
ZHOU Zhenghua, WANG Xiyue. Synthetic technology & application, dimensional stability and mechanical relaxation of polyester industrial yarn[J]. Synthesis Technology and Applications 1998, 13(3): 13-18.
[6] YAN T W, YAO Y B, JIN H, et al. Elastic response of copolyether-ester fiber on its phase morphology under different heat-treatment condition[J]. Journal of Polymer Research, 2016, 23(11): 226-233.
doi: 10.1007/s10965-016-1118-y
[7] GUPTA V B, KUMAR S. Intrinsic birefringence of poly(ethylene terephthalate)[J]. Journal of Polymer Science Part A:Polymer Chemistry, 1979, 17(8): 1307-1315.
[8] CHE J, LOCKER C R, LEE S, et al. Plastic deformation of semicrystalline polyethylene by X-ray scattering: comparison with atomistic simulations[J]. Macromolecules, 2013, 46(13): 5279-5289.
doi: 10.1021/ma4005007
[9] YU J C, CHEN K, LI X Y, et al. Performance and structure changes of the aromatic co-polysulfonamide fibers during thermal-oxidative aging process[J]. Journal of Applied Polymer Science, 2016, 133(41): 44078-44088.
[10] JIANG G S, HUANG W F, LI L, et al. Structure and properties of regenerated cellulose fibers from different technology processes[J]. Carbohydrate Polymers, 2012, 87(3): 2012-2018.
doi: 10.1016/j.carbpol.2011.10.022
[11] MUTHY N S, BEDNARCZYK C, MOORE R A F, et al. Analysis of small-angle X-ray scattering from fibers: structural changes in nylon 6 upon drawing and annealing[J]. Journal of Polymer Science Part B: Polymer Physics, 1996, 34(5): 821-835.
doi: 10.1002/(SICI)1099-0488(19960415)34:5<821::AID-POLB1>3.0.CO;2-P
[12] MUTHY N S, GRUBB D T. Tilted lamellae in an affinely deformed 3D macrolattice and elliptical features in small-angle scattering[J]. Journal of Polymer Science Part B: Polymer Physics, 2006, 44(8): 1277-1286.
doi: 10.1002/polb.20778
[1] 何崎, 李军令, 靳高岭, 刘津, 柯福佑, 陈烨, 王华平. 高卷曲聚醚酯/聚酯并列复合纤维的制备及其性能[J]. 纺织学报, 2022, 43(09): 70-75.
[2] 高峰, 孙燕琳, 肖顺立, 陈文兴, 吕汪洋. 不同牵伸倍率下聚酯复合纤维的微观结构与性能[J]. 纺织学报, 2022, 43(08): 34-39.
[3] 孙颖, 李端鑫, 于洋, 陈嘉琳, 范皖月. 大麻纤维的芬顿法脱胶及其性能[J]. 纺织学报, 2022, 43(08): 95-100.
[4] 黄耀丽, 陆诚, 蒋金华, 陈南梁, 邵慧奇. 聚酰亚胺纤维增强聚二甲基硅氧烷柔性复合膜的热力学性能[J]. 纺织学报, 2022, 43(06): 22-28.
[5] 渠赟, 马维, 刘颖, 任学宏. 可光降解聚羟基丁酸酯/聚己内酯基抗菌纤维膜的制备及其性能[J]. 纺织学报, 2022, 43(06): 29-36.
[6] 孙焕惟, 张恒, 崔景强, 朱斐超, 王国锋, 苏天阳, 甄琪. 聚乳酸非织造材料的后牵伸辅助熔喷成形工艺及其力学性能[J]. 纺织学报, 2022, 43(06): 86-93.
[7] 赵波波, 王亮, 李敬毓, 万刚, 夏兆鹏, 刘雍. 六次甲基四胺交联酚醛纤维的制备及其性能[J]. 纺织学报, 2022, 43(05): 57-62.
[8] 邵灵达, 黄锦波, 金肖克, 田伟, 祝成炎. 硅烷偶联剂改性处理对玻璃纤维织物增强聚苯硫醚复合材料性能的影响[J]. 纺织学报, 2022, 43(04): 68-73.
[9] 方镁淇, 王茜, 李彦, 李超婧, 黎昊, 王璐. 女性压力性尿失禁吊带的设计及其体外力学性能评价[J]. 纺织学报, 2022, 43(03): 38-43.
[10] 谷元慧, 周红涛, 张典堂, 刘景艳, 王曙东. 碳纤维增强编织复合材料圆管的扭转力学性能及其损伤机制[J]. 纺织学报, 2022, 43(03): 95-102.
[11] 陈咏, 乌婧, 王朝生, 潘小虎, 李乃祥, 戴钧明, 王华平. 生物可降解聚己二酸-对苯二甲酸丁二醇酯纤维的制备及其环境降解性能[J]. 纺织学报, 2022, 43(02): 37-43.
[12] 闵小豹, 潘志娟. 生物质纤维/菠萝叶纤维多组分混纺纱线的品质与性能[J]. 纺织学报, 2022, 43(01): 74-79.
[13] 王松立, 王美林, 周湘, 刘遵峰. 人造蜘蛛丝与仿蜘蛛丝纤维的研究进展[J]. 纺织学报, 2021, 42(12): 174-179.
[14] 宋雪旸, 张岩, 徐成功, 王萍, 阮芳涛. 碳纤维/聚丙烯/聚乳酸增强复合材料的力学性能[J]. 纺织学报, 2021, 42(11): 84-88.
[15] 周濛濛, 蒋高明, 高哲, 郑培晓. 纬编衬经衬纬管状织物增强复合材料研究进展[J]. 纺织学报, 2021, 42(07): 184-191.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!