纺织学报 ›› 2022, Vol. 43 ›› Issue (06): 9-14.doi: 10.13475/j.fzxb.20210804806

• 高性能纺织结构柔性材料制备及应用 • 上一篇    下一篇

金属酚醛/两性离子聚合物涂层聚丙烯补片的制备及其抗蛋白吸附性能

王茜1,2, 乔燕莎1,2, 王君硕1, 李彦1,2,3(), 王璐1,2,3   

  1. 1.东华大学 纺织学院, 上海 201620
    2.东华大学 纺织面料技术教育部重点实验室, 上海 201620
    3.东华大学 纺织行业生物医用纺织材料与技术重点实验室, 上海 201620
  • 收稿日期:2021-08-10 修回日期:2022-01-14 出版日期:2022-06-15 发布日期:2022-07-15
  • 通讯作者: 李彦
  • 作者简介:王茜(1997—),女,硕士生。主要研究方向为生物医用疝修补片。
  • 基金资助:
    中央高校基本科研业务费专项资金项目(2232020G-01);高等学校学科创新引智计划项目(BP0719035);国家重点研发计划项目(2016YFB0303300)

Preparation of metal phenolic network/zwitterionic polymer coated polypropylene mesh and its resistance to protein adsorption

WANG Qian1,2, QIAO Yansha1,2, WANG Junshuo1, LI Yan1,2,3(), WANG Lu1,2,3   

  1. 1. College of Textiles, Donghua University, Shanghai 201620, China
    2. Key Laboratory of Textile Science & Technology of Ministry of Education, Donghua University, Shanghai 201620, China
    3. Key Laboratory of Textile Industry for Biomedical Textile Materials and Technology, Donghua University, Shanghai 201620, China
  • Received:2021-08-10 Revised:2022-01-14 Published:2022-06-15 Online:2022-07-15
  • Contact: LI Yan

摘要:

为将亲水两性离子材料与惰性聚丙烯(PP)补片有效结合,降低蛋白质在补片表面的吸附,利用三价铁离子和单宁酸(TA)层层自组装的金属酚醛网络(MPN),介导聚羧酸甜菜碱甲基丙烯酸酯(PCBMA)固定在PP补片上,对该改性涂层补片的微观形貌、表面成分、接触角、表面电位、力学性能、抗蛋白吸附性能和细胞毒性进行表征与分析。结果表明:MPN可将PCBMA均匀固定在单丝表面,改变补片的表面化学组成;PCBMA-Fe/TA涂层将PP表面的水接触角降低至37°,表面电位由-55.7 mV提高到-5.14 mV;涂层不影响PP补片的力学性能,并为补片带来了显著的抗蛋白吸附效果;改性补片的相对细胞活力达到89%,表现出良好的生物相容性。研究结果有望为惰性医疗器械的抗污改性提供参考。

关键词: 聚丙烯补片, 单宁酸, 金属酚醛网络, 层层自组装, 两性离子, 抗蛋白吸附性能

Abstract:

In order to combine hydrophilic zwitterions with inert polypropylene (PP) mesh and reduce the adsorption of protein on the mesh surface, poly(carboxybetaine methacrylate) (PCBMA) was deposited on PP mesh through Fe(Ⅲ) and tannic acid (TA) layer-by-layer self-assembly of metal phenolic network (MPN). The micro-morphology, surface composition, contact angle, surface potential, mechanical properties, protein adsorption properties and cytotoxicity of the meshes before and after modification were characterized and analyzed. The results show that PCBMA can wrap evenly on the surface of PP monofilament assisted by MPN, and the surface chemical composition of the mesh is changed. Moreover, PCBMA-Fe/TA coating reduces the water contact angle of the mesh to 37° and the surface zeta potential is increased from -55.7 mV to -5.14 mV. In addition, the mechanical properties of PP mesh are not affected by the coating, but the coating brings significant protein adsorption resistance to the mesh. Furthermore, the relative cell viability of the modified mesh reaches 89%, which shows excellent biocompatibility. In general, the study provides a reference basis for the antifouling modification of inert medical devices.

Key words: polypropylene mesh, tannic acid, metal phenolic network, layer-by-layer, zwitterionic, protein adsorption resistance

中图分类号: 

  • R318.0

图1

PP、Fe/TA-PP和PCBMA-Fe/TA-PP的SEM照片"

图2

PCBMA的核磁共振氢谱图"

图3

PCBMA-Fe/TA-PP的X射线光电子能谱图"

图4

PP、Fe/TA-PP和PCBMA-Fe/TA-PP的红外光谱图"

图5

改性前后补片的水接触角变化"

图6

改性前后补片的表面Zeta电位变化"

表1

改性前后补片的力学性能"

试样名称 断裂强度/(N·cm-1) 断裂伸长率/%
横向 纵向 横向 纵向
PP 50.9±0.6 48.1±2.3 61.8±0.8 90.0±1.7
Fe/TA-PP 51.1±0.5 50.3±1.6 59.8±1.3 92.4±1.4
PCBMA-Fe/TA-PP 53.2±0.8 50.8±1.9 61.9±1.4 93.1±1.2

图7

BSA-FITC标记的补片荧光图像"

表2

小鼠成纤维细胞在24 h的CCK-8吸光度"

试样名称 CCK-8吸光度值
空白对照 0.53±0.05
PP 0.51±0.06
PCBMA-Fe/TA-PP 0.47±0.06
[1] 段先召, 王婉东, 陈洪流. 腹股沟疝修补术后慢性疼痛的最新研究进展[J]. 世界最新医学信息文摘, 2018, 18(72): 78-82.
DUAN Xianzhao, WANG Wandong, CHEN Hongliu. Recent advances in chronic pain after inguinal hernia repair[J]. World Latest Medicine Information, 2018, 18(72): 78-82.
[2] SANDERS D L, KINGSNORTH A N. Prosthetic mesh materials used in hernia surgery[J]. Expert Review of Medical Devices, 2012, 9(2): 159-179.
doi: 10.1586/erd.11.65
[3] SANBHAL N, MIAO L L, XU R, et al. Physical structure and mechanical properties of knitted hernia mesh materials: a review[J]. Journal of Industrial Textiles, 2018, 48(1): 333-360.
doi: 10.1177/1528083717690613
[4] NIEBUHR H, WEGNER F, HUKAUF M, et al. What are the influencing factors for chronic pain following TAPP inguinal hernia repair: an analysis of 20004 patients from the Herniamed Registry[J]. Surgical Endoscopy, 2018, 32(4): 1971-1983.
doi: 10.1007/s00464-017-5893-2
[5] LIU W B, XIE Y J, ZHENG Y D, et al. Regulatory science for hernia mesh: current status and future perspectives[J]. Bioactive Materials, 2021, 6(2): 420-432.
doi: 10.1016/j.bioactmat.2020.08.021
[6] CHEN Q, ZHANG D, GU J, et al. The impact of antifouling layers in fabricating bioactive surfaces[J]. Acta Biomaterialia, 2021, 126: 45-62.
doi: 10.1016/j.actbio.2021.03.022
[7] ZHANG D H, CHEN Q, SHI C, et al. Dealing with the foreign-body response to implanted biomaterials: strategies and applications of new materials[J]. Advanced Functional Materials, 2021, 31(6): 2007226.
doi: 10.1002/adfm.202007226
[8] NADIZADEH Z, MAHDAVI H. Grafting of zwitterion polymer on polyamide nanofiltration membranes via surface-initiated RAFT polymerization with improved antifouling properties as a new strategy[J]. Separation and Purification Technology, 2021, 254: 117605.
doi: 10.1016/j.seppur.2020.117605
[9] ZHANG H R, ZHANG X M, KUANG Z, et al. Bionic antibacterial modification of IOL through SI-RAFT polymerization of P(TOEAC-co-MPC) brushes to prevent PCO and endophthalmitis[J]. Polymer Testing, 2020, 88: 106553.
doi: 10.1016/j.polymertesting.2020.106553
[10] LIN Y, WANG L, ZHOU J, et al. Surface modification of PVA hydrogel membranes with carboxybetaine methacrylate via PET-RAFT for anti-fouling[J]. Polymer, 2019, 162: 80-90.
doi: 10.1016/j.polymer.2018.12.026
[11] KIM S Y, SEO H J, KIM S, et al. Formation of various polymeric films via surface-initiated ARGET ATRP on silicon substrates[J]. Bulletin of the Korean Chemical Society, 2021, 42(5): 761-766.
doi: 10.1002/bkcs.12256
[12] LORUSSO E, ALI W, LENIART M, et al. Tuning the density of zwitterionic polymer brushes on PET fabrics by aminolysis: effect on antifouling performances[J]. Polymers, 2020, 12(1): 6.
doi: 10.3390/polym12010006
[13] XIE W, TIRAFERRI A, JI X, et al. Green and sustainable method of manufacturing anti-fouling zwitterionic polymers-modified poly(vinyl chloride) ultrafiltration membranes[J]. Journal of Colloid and Interface Science, 2021, 591: 343-351.
doi: 10.1016/j.jcis.2021.01.107
[14] LIN Y C, CHAO C M, WANG D K, et al. Enhancing the antifouling properties of a PVDF membrane for protein separation by grafting branch-like zwitterions via a novel amphiphilic SMA-HEA linker[J]. Journal of Membrane Science, 2021, 624: 119126.
doi: 10.1016/j.memsci.2021.119126
[15] EJIMA H, RICHARDSON J J, CARUSO F. Metal-phenolic networks as a versatile platform to engineer nanomaterials and biointerfaces[J]. Nano Today, 2017, 12: 136-148.
doi: 10.1016/j.nantod.2016.12.012
[16] QIAO Y S, LI Y, ZHANG Q, et al. Dopamine-mediated zwitterionic polyelectrolyte-coated polypropylene hernia mesh with synergistic anti-inflammation effects[J]. Langmuir, 2020, 36(19): 5251-5261.
doi: 10.1021/acs.langmuir.0c00602
[17] JAHNERT T, HAGER M D, SCHUBERT U S. Application of phenolic radicals for antioxidants, as active materials in batteries, magnetic materials and ligands for metal-complexes[J]. Journal of Materials Chemistry A, 2014, 2(37): 15234-15251.
doi: 10.1039/C4TA03023K
[18] CHEN S, LI L, ZHAO C, et al. Surface hydration: principles and applications toward low-fouling/nonfouling biomaterials[J]. Polymer, 2010, 51(23): 5283-5293.
doi: 10.1016/j.polymer.2010.08.022
[19] WANG F, ZHANG H, YU B, et al. Review of the research on anti-protein fouling coatings materials[J]. Progress in Organic Coatings, 2020, 147: 105860.
doi: 10.1016/j.porgcoat.2020.105860
[20] TANAKA M, MORITA S, HAYASHI T. Role of interfacial water in determining the interactions of proteins and cells with hydrated materials[J]. Colloids and Surfaces B: Bio Interfaces, 2021, 198: 111449.
[1] 朱小威, 韦天琛, 李亦江, 邢铁玲, 陈国强. 聚苯乙烯/铁-单宁酸配合物微球在棉织物上的结构生色[J]. 纺织学报, 2022, 43(05): 32-37.
[2] 刘新华, 刘海龙, 方寅春, 严鹏, 侯广开. 聚乙烯亚胺/植酸层层自组装阻燃涤/棉混纺织物制备及其性能[J]. 纺织学报, 2021, 42(11): 103-109.
[3] 刘淑萍, 李亮, 刘让同, 胡泽栋, 耿长军. 棉织物的3-氨丙基三乙氧基硅烷阻燃整理[J]. 纺织学报, 2021, 42(10): 107-114.
[4] 王华清, 闫红强. 生物基三组分自组装涂层构筑及其对苎麻织物的阻燃改性[J]. 纺织学报, 2021, 42(04): 132-138.
[5] 曾凡鑫, 秦宗益, 沈玥莹, 陈园余, 胡铄. 自熄性棉织物的喷涂辅助层层自组装法制备及其阻燃性能[J]. 纺织学报, 2021, 42(01): 103-111.
[6] 乔燕莎, 王茜, 李彦, 桑佳雯, 王璐. 聚多巴胺涂层聚丙烯疝气补片的制备及其体外炎性反应[J]. 纺织学报, 2020, 41(09): 162-166.
[7] 王访鹤, 王锐, 魏丽菲, 王照颖, 张安莹, 王德义. 层层自组装阻燃改性聚酯织物的制备及其性能[J]. 纺织学报, 2019, 40(11): 106-112.
[8] 范静静, 王鸿博, 傅佳佳, 王文聪. 层层自组装的碳纳米管复合导电棉织物制备[J]. 纺织学报, 2019, 40(04): 90-95.
[9] 刘菲, 李秋瑾, 巩继贤, 李政, 刘秀明, 张健飞. 层层自组装多糖微胶囊的制备及其缓释型纯棉织物修饰应用[J]. 纺织学报, 2019, 40(02): 114-118.
[10] 陈威 关晋平 陈国强 匡小慧. 静电层层自组装法整理多巴胺改性涤/棉混纺织物的阻燃性能[J]. 纺织学报, 2017, 38(09): 94-100.
[11] 任元林 张悦 曾倩 谷叶童. 织物阻燃涂层新工艺的研究进展[J]. 纺织学报, 2017, 38(09): 168-173.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!