纺织学报 ›› 2022, Vol. 43 ›› Issue (12): 190-196.doi: 10.13475/j.fzxb.20210805407

• 综合述评 • 上一篇    下一篇

纤维基人工神经导管的研究进展

戴家木, 聂渡, 李素英, 张瑜, 张伟, 刘蓉()   

  1. 南通大学 纺织服装学院, 江苏 南通 226019
  • 收稿日期:2021-08-11 修回日期:2022-04-16 出版日期:2022-12-15 发布日期:2023-01-06
  • 通讯作者: 刘蓉
  • 作者简介:戴家木(1990—),男,讲师,博士。主要研究方向为生物医用纺织材料。
  • 基金资助:
    国家重点研发计划项目(2016YFB0303101);国家自然科学基金青年基金项目(51803094);江苏高校青蓝工程项目(苏教师〔2020〕10号)

Research progress in fiber-based artificial nerve guide conduits

DAI Jiamu, NIE Du, LI Suying, ZHANG Yu, ZHANG Wei, LIU Rong()   

  1. School of Textile and Clothing, Nantong University, Nantong, Jiangsu 226019, China
  • Received:2021-08-11 Revised:2022-04-16 Published:2022-12-15 Online:2023-01-06
  • Contact: LIU Rong

摘要:

为开发具有优良生物相容性、多重功能性和良好修复能力的纤维基人工神经导管支架,从原料组成、制备方法、结构设计、功能改性和细胞培养等方面对人工神经导管的研究进展进行综述,并对其未来研究方向进行分析。天然或合成聚合物及其混合材料,可通过熔融纺丝、静电纺丝、自组装等方法制备成直径不同的纤维基人工神经导管,普遍认为在中空管道中添加海绵、水凝胶或取向微孔可更好地引导细胞定向生长,并为细胞生长提供适宜的微环境;经过导电、磁性等改性或加入生长因子、信使核糖核酸(mRNA)等活性物质,可使神经导管支架更好地促进细胞增殖与分化;最后指出纤维基人工神经导管的潜在改进方向,以期进一步提高其神经修复效果。

关键词: 人工神经导管, 纤维基支架材料, 生长因子, 功能化改性

Abstract:

For the purpose of developing artificial nerve guide conduit (NGC) with good biocompatibility, multi-function and excellent nerve regeneration capacity, raw materials component, fabrication method, structure designing, functionalizing and cell incubation of the scaffolds as well as the analysis of future research directions were reviewed. Literature showed that fiber-based NGC with different diameters were prepared using natural, synthesized polymers, or mixed materials, by various methods such as melt spinning, electrospinning and self-assembling. In general, hollow tubular scaffolds were filled with sponge, hydrogel or axial channel to improve the orientated growth of cells to provide appropriate micro environment for cell growth. Through modifying with electro-conductive or magnetic materials, loading active substances such as growth factors or messenger RNA (mRNA), would accelerate cell proliferation and differentiation. Subsequently, the potential development directions of NGC are proposed to further improve the efficiency of nerve regeneration.

Key words: artificial nerve guide conduit, fiber-based scaffold, growth factor, functionalization

中图分类号: 

  • TS106.5

图1

不同结构的神经导管支架材料的制备过程"

图2

不同功能化纤维基神经导管的制备方法"

[1] 龚超, 张玉强, 王伟. 细胞治疗周围神经损伤的作用及机制[J]. 中国组织工程研究, 2022, 26(13): 2114-2119.
GONG Chao, ZHANG Yuqiang, WANG Wei. Role and mechanism of cell therapy in repair of peripheral nerve injury[J]. Chinese Journal of Tissue Engineering Research, 2022, 26(13): 2114-2119.
[2] WANG J, XIONG H, ZHU T H, et al. Bioinspired multichannel nerve guidance conduit based on shape memory nanofibers for potential application in peripheral nerve repair[J]. ACS Nano, 2020, 14(10): 12579-12595.
doi: 10.1021/acsnano.0c03570
[3] 李文军, 陈山林. 周围神经损伤领域相关进展[J]. 骨科临床与研究杂志, 2019, 4(2): 65-68.
LI Wenjun, CHEN Shanlin. Research progress of peripheral nerve injury[J]. Journal of Clinical Orthopedics and Research, 2019, 4(2): 65-68.
[4] CHANG Y C, CHEN M H, LIAO S Y, et al. Multichanneled nerve guidance conduit with spatial gradients of neurotrophic factors and oriented nanotopography for repairing the peripheral nervous system[J]. ACS Applied Materials & Interfaces, 2017, 9(43): 37623-37636.
[5] HOU Y J, WANG X Y, ZHANG Z R, et al. Repairing transected peripheral nerve using a biomimetic nerve guidance conduit containing intraluminal sponge fillers[J]. Advanced Healthcare Materials, 2019. DOI: 10.1002/adhm.201900913.
doi: 10.1002/adhm.201900913
[6] LU J J, SUN X, YIN H Y, et al. A neurotrophic peptide-functionalized self-assembling peptide nanofiber hydrogel enhances rat sciatic nerve regeneration[J]. Nano Research, 2018, 11(9): 4599-4613.
doi: 10.1007/s12274-018-2041-9
[7] LAU Y T, KWOK L F, TAM K W, et al. Genipin-treated chitosan nanofibers as a novel scaffold for nerve guidance channel design[J]. Colloids and Surfaces B: Biointerfaces, 2018, 162: 126-134.
doi: 10.1016/j.colsurfb.2017.11.061
[8] TAHERI N S, WANG Y C, BEREAN K, et al. Lithium intercalated molybdenum disulfide-coated cotton thread as a viable nerve tissue scaffold candidate[J]. ACS Applied Nano Materials, 2019, 2(4): 2044-2053.
doi: 10.1021/acsanm.9b00049
[9] AMINI S, SAUDI A, AMIRPOUR N, et al. Application of electrospun polycaprolactone fibers embedding lignin nanoparticle for peripheral nerve regeneration: in vitro and in vivo study[J]. International Journal of Biological Macromolecules, 2020, 159: 154-173.
doi: S0141-8130(20)33220-7 pmid: 32416294
[10] DU J R, LIU J H, YAO S L, et al. Prompt peripheral nerve regeneration induced by a hierarchically aligned fibrin nanofiber hydrogel[J]. Acta Biomaterialia, 2017, 55: 296-309.
doi: S1742-7061(17)30237-4 pmid: 28412554
[11] WANG J, CHENG Y, CHEN L, et al. In vitro and in vivo studies of electroactive reduced graphene oxide-modified nanofiber scaffolds for peripheral nerve regeneration[J]. Acta Biomaterialia, 2019, 84: 98-113.
doi: S1742-7061(18)30695-0 pmid: 30471474
[12] HUANG L L, ZHU L, SHI X W, et al. A compound scaffold with uniform longitudinally oriented guidance cues and a porous sheath promotes peripheral nerve regeneration in vivo[J]. Acta Biomaterialia, 2018, 68: 223-236.
doi: S1742-7061(17)30766-3 pmid: 29274478
[13] PAWAR K, WELZEL G, HAYNL C, et al. Recombinant spider silk and collagen-based nerve guidance conduits support neuronal cell differentiation and functionality in vitro[J]. ACS Applied Bio Materials, 2019, 2(11): 4872-4880.
doi: 10.1021/acsabm.9b00628 pmid: 35021487
[14] SUN Y Q, LI W, WU X L, et al. Functional self-assembling peptide nanofiber hydrogels designed for nerve degeneration[J]. ACS Applied Materials & Interfaces, 2016, 8(3): 2348-2359.
[15] JAHROMI H K, FARZIN A, HASANZADEH E, et al. Enhanced sciatic nerve regeneration by poly-L-lactic acid/multi-wall carbon nanotube neural guidance conduit containing Schwann cells and curcumin encapsulated chitosan nanoparticles in rat[J]. Materials Science and Engineering: C, 2020. DOI: 10.1016/j.msec.2019.110564.
doi: 10.1016/j.msec.2019.110564
[16] OMIDINIA-ANARKOLI A, BOESVELD S, TUVSHINDORJ U, et al. An injectable hybrid hydrogel with oriented short fibers induces unidirectional growth of functional nerve cells[J]. Small, 2017. DOI: 10.1002/smll.201702207.
doi: 10.1002/smll.201702207
[17] HONG M H, HONG H J, PANG H, et al. Controlled release of growth factors from multilayered fibrous scaffold for functional recoveries in crushed sciatic nerve[J]. ACS Biomaterials Science & Engineering, 2018, 4(2): 576-586.
[18] ZHANG N, MILBRETA U, CHIN J S, et al. Biomimicking fiber scaffold as an effective in vitro and in vivo microrna screening platform for directing tissue regeneration[J]. Advanced Science, 2019. DOI: 10.1002/advs.201800808.
doi: 10.1002/advs.201800808
[19] JIA Y C, YANG W C, ZHANG K H, et al. Nanofiber arrangement regulates peripheral nerve regeneration through differential modulation of macrophage phenotypes[J]. Acta Biomaterialia, 2019, 83: 291-301.
doi: S1742-7061(18)30639-1 pmid: 30541701
[20] SANTOS D, WIERINGA P, MORONI L, et al. PEOT/PBT guides enhance nerve regeneration in long gap defects[J]. Advanced Healthcare Materials, 2017. DOI: 10.1002/adhm.201600298.
doi: 10.1002/adhm.201600298
[21] KHATRI Z, JATOI A W, AHMED F, et al. Cell adhesion behavior of poly(ε-caprolactone)/poly(L-lactic acid) nanofibers scaffold[J]. Materials Letters, 2016, 171: 178-181.
doi: 10.1016/j.matlet.2016.02.061
[22] WU H, LIU J Y, FANG Q, et al. Establishment of nerve growth factor gradients on aligned chitosan-polylactide/alginate fibers for neural tissue engineering applications[J]. Colloids and Surfaces B: Biointerfaces, 2017, 160: 598-609.
doi: 10.1016/j.colsurfb.2017.10.017
[23] SUN B B, ZHOU Z F, WU T, et al. Development of nanofiber sponges-containing nerve guidance conduit for peripheral nerve regeneration in vivo[J]. ACS Applied Materials & Interfaces, 2017, 9(32): 26684-26696.
[24] CHANG W, SHAH M B, LEE P, et al. Tissue-engineered spiral nerve guidance conduit for peripheral nerve regeneration[J]. Acta Biomaterialia, 2018, 73: 302-311.
doi: S1742-7061(18)30249-6 pmid: 29702292
[25] QUAN Q, MENG H, CHANG B, et al. Novel 3-D helix-flexible nerve guide conduits repair nerve defects[J]. Biomaterials, 2019, 207: 49-60.
doi: S0142-9612(19)30190-5 pmid: 30954885
[26] PILLAI M M, SATHISHKUMAR G, HOUSHYAR S, et al. Nanocomposite-coated silk-based artificial conduits: the influence of structures on regeneration of the peripheral nerve[J]. ACS Applied Bio Materials, 2020, 3(7): 4454-4464.
doi: 10.1021/acsabm.0c00430 pmid: 35025444
[27] LIU X X, LU X C, WANG Z H, et al. Effect of bore fluid composition on poly(lactic-co-glycolic acid) hollow fiber membranes fabricated by dry-jet wet spinning[J]. Journal of Membrane Science, 2021. DOI: 10.1016/j.memsci.2021.119784.
doi: 10.1016/j.memsci.2021.119784
[28] JIAO J, WANG F, HUANG J J, et al. Microfluidic hollow fiber with improved stiffness repairs peripheral nerve injury through non-invasive electromagnetic induction and controlled release of NGF[J]. Chemical Engineering Journal, 2021.DOI:10.1016/j.cej.2021.131826.
doi: 10.1016/j.cej.2021.131826
[29] LEE S J, ASHEGHALI D, BLEVINS B, et al. Touch-spun nanofibers for nerve regeneration[J]. ACS Applied Materials & Interfaces, 2020, 12(2): 2067-2075.
[30] SINGH A, SHIEKH P A, DAS M, et al. Aligned chitosan-gelatin cryogel-filled polyurethane nerve guidance channel for neural tissue engineering: fabrication, characterization, and in vitro evaluation[J]. Biomacromolecules, 2019, 20(2): 662-673.
doi: 10.1021/acs.biomac.8b01308 pmid: 30354073
[31] KOPPES R A, PARK S, HOOD T, et al. Thermally drawn fibers as nerve guidance scaffolds[J]. Biomaterials, 2016, 81: 27-35.
doi: S0142-9612(15)00973-4 pmid: 26717246
[32] MENG C, JIANG W B, HUANG Z C, et al. Fabrication of a highly conductive silk knitted composite scaffold by two-step electrostatic self-assembly for potential peripheral nerve regeneration[J]. ACS Applied Materials & Interfaces, 2020, 12(10): 12317-12327.
[33] JING W, AO Q, WANG L, et al. Constructing conductive conduit with conductive fibrous infilling for peripheral nerve regeneration[J]. Chemical Engineering Journal, 2018, 345: 566-577.
doi: 10.1016/j.cej.2018.04.044
[34] ZHANG J, ZHANG X, WANG C Y, et al. Conductive composite fiber with optimized alignment guides neural regeneration under electrical stimulation[J]. Advanced Healthcare Materials, 2021. DOI: 10.1002/adhm.202000604.
doi: 10.1002/adhm.202000604
[35] CHEN X, GE X M, QIAN Y, et al. Electrospinning multilayered scaffolds loaded with melatonin and Fe3O4magnetic nanoparticles for peripheral nerve regenera-tion[J]. Advanced Functional Materials, 2020. DOI: 10.1002/adfm.202004537.
doi: 10.1002/adfm.202004537
[36] ZHOU G, CHANG W, ZHOU X Q, et al. Nanofibrous nerve conduits with nerve growth factors and bone marrow stromal cells pre-cultured in bioreactors for peripheral nerve regeneration[J]. ACS Applied Materials & Interfaces, 2020, 12(14): 16168-16177.
[37] ZHU L, JIA S J, LIU T J, et al. Aligned PCL fiber conduits immobilized with nerve growth factor gradients enhance and direct sciatic nerve regeneration[J]. Advanced Functional Materials, 2020. DOI: 10.1002/adfm.202002610.
doi: 10.1002/adfm.202002610
[38] SAMADIAN H, EHTERAMI A, SARRAFZADEH A, et al. Sophisticated polycaprolactone/gelatin nanofibrous nerve guided conduit containing platelet-rich plasma and citicoline for peripheral nerve regeneration: in vitro and in vivo study[J]. International Journal of Biological Macromolecules, 2020, 150: 380-388.
doi: S0141-8130(19)40591-6 pmid: 32057876
[39] LU J J, YAN X Q, SUN X, et al. Synergistic effects of dual-presenting VEGF-and BDNF-mimetic peptide epitopes from self-assembling peptide hydrogels on peripheral nerve regeneration[J]. Nanoscale, 2019, 11(42): 19943-19958.
doi: 10.1039/C9NR04521J
[40] YANG Z, YANG Y, XU Y C, et al. Biomimetic nerve guidance conduit containing engineered exosomes of adipose-derived stem cells promotes peripheral nerve regeneration[J]. Stem Cell Research & Therapy, 2021. DOI: 10.1186/s13287-021-02528-x.
doi: 10.1186/s13287-021-02528-x
[41] WU T, LI D D, WANG Y F, et al. Laminin-coated nerve guidance conduits based on poly(L-lactide-co-glycolide) fibers and yarns for promoting Schwann cells' proliferation and migration[J]. Journal of Materials Chemistry B, 2017, 5(17): 3186-3194.
doi: 10.1039/c6tb03330j pmid: 32263716
[42] ALMANSOORI A A, HWANG C H, LEE S H, et al. Tantalum-poly (L-lactic acid) nerve conduit for peripheral nerve regeneration[J]. Neuroscience Letters, 2020. DOI: 10.1016/j.neulet.2020.135049.
doi: 10.1016/j.neulet.2020.135049
[43] SUN A X, PREST T A, FOWLER J R, et al. Conduits harnessing spatially controlled cell-secreted neurotrophic factors improve peripheral nerve regeneration[J]. Biomaterials, 2019, 203: 86-95.
doi: S0142-9612(19)30058-4 pmid: 30857644
[1] 姚若彤, 赵婧媛, 闫一欣, 段立蓉, 王恬, 严佳, 张淑军, 李刚. 新型可降解编织结构神经再生导管的制备及其性能[J]. 纺织学报, 2022, 43(02): 125-131.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!