纺织学报 ›› 2022, Vol. 43 ›› Issue (10): 126-132.doi: 10.13475/j.fzxb.20210807107

• 染整与化学品 • 上一篇    下一篇

三维超疏水超细纤维绒面革的仿生构建

高强1, 范浩军1(), 颜俊1, 陈玉国2, 郑萍2   

  1. 1.四川大学 皮革化学与工程教育部重点实验室, 四川 成都 610065
    2.山东天庆科技发展有限公司, 山东 德州 253000
  • 收稿日期:2021-08-18 修回日期:2022-07-14 出版日期:2022-10-15 发布日期:2022-10-28
  • 通讯作者: 范浩军
  • 作者简介:高强(1998—),男,硕士生。主要研究方向为功能超纤合成革材料的制备及工艺研究。
  • 基金资助:
    山东省重点研发计划(重大科技创新工程)项目(2019JZZY010355);清远市创新创业团队项目(清科[2018]31号)

Bionic construction of three-dimentional super hydrophobic microfiber suede leather

GAO Qiang1, FAN Haojun1(), YAN Jun1, CHEN Yuguo2, ZHENG Ping2   

  1. 1. Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu, Sichuan 610065, China
    2. Shandong Tianqing Technology Development Co., Ltd., Dezhou, Shandong 253000, China
  • Received:2021-08-18 Revised:2022-07-14 Published:2022-10-15 Online:2022-10-28
  • Contact: FAN Haojun

摘要:

为解决超细纤维绒面革二维超疏水表面耐久性差的问题,提出了一种三维超疏水超细纤维绒面革的构建方法。将含氟水基聚氨酯和纳米前驱体正硅酸乙酯的混合液均匀含浸至超细纤维非织造布中,在弱酸性条件下诱发纳米前驱体在超细纤维绒面革内部原位生成纳米SiO2颗粒,形成了整体具有自相似性的类荷叶微纳粗糙结构,仿生构建了三维超疏水超细纤维绒面革,并对其接触角、形貌特征、元素组成、摩擦耐久性和化学稳定性进行了测试与表征。结果表明:所制备的超细纤维绒面革表面水接触角高达153.5°;即使经受2 100次摩擦,浸泡在乙醇、对二甲苯、四氢呋喃、正己烷、pH值为1和14的水溶液中24 h,皂洗10次,紫外光照24 h,热处理后其水接触角均可保持在150°左右,显示出优异的超疏水稳定性。

关键词: 仿生, 超细纤维, 合成革, 绒面革, 超疏水, 自相似性

Abstract:

In order to tackle the poor durability of 2-D super hydrophobic microfiber suede leather, a construction method of 3-D super hydrophobic microfiber suede was proposed inspired by the hydrophobic structure of lotus leaf surface and the special 3-D network structure of microfiber nonwoven. The mixture of fluorine-containing waterborne polyurethane and nano precursor (tetraethoxysilane) was uniformly impregnated to superfine fiber nonwoven, and under weak acid conditions the nano precursor was induced to in-situ generate nano SiO2 particles inside the microfiber suede, which formed a lotus-like micro/nano rough surface with overall self-similarity. A 3-D super hydrophobic microfiber suede leather was bionically constructed, and its morphology, chemical composition, contact angle, friction durability and chemical stability were measured and characterized. The results show that the water contact angle of microfiber suede surface is up to 153.5°. After 2 100 times of abrasion, soaking for 24 h in aqueous solutions (pH=1 and 14) containing ethanol, p-xylene, tetrahydrofuran, and n-hexane, soap washing for 10 times, exposing to UV light for 24 h, and heat treatment, the water contact angle is still around 150°, demonstrating a durable 3-D super hydrophobicity.

Key words: bionic, microfiber, synthetic leather, suede leather, super hydrophobic, self-similarity

中图分类号: 

  • TS565

图1

3-D-SHMSL的制备流程图"

表1

不同TEOS质量分数的超细纤维绒面革的水接触角和滑动角"

TEOS质量分数/% 水接触角/(°) 滑动角/(°)
0.3 139.7 90
0.9 143.3 60
1.5 146.8 30
3.0 149.6 20
6.0 152.0 10
9.0 153.5 8
15.0 153.8 5
30.0 154.2 6

图2

不同样品的SEM照片"

图3

不同样品的XPS光谱"

图4

3-D-SHMSL表面、切面和截面上的水滴"

图5

3-D-SHMSL上不同区域的ATR-FTIR光谱"

图6

3-D-SHMSL不同位置的SEM照片"

图7

3-D-SHMSL不同位置的XPS光谱"

表2

3-D-SHMSL不同位置的相对元素含量"

样品 C O N Si F
表面 35.89 9.76 0.83 5.33 48.19
切面 35.68 11.32 0.63 5.68 46.69
截面 36.35 10.33 0.57 5.44 47.31

表3

水接触角、滑动角和摩擦次数的关系"

摩擦次数 水接触角/(°) 滑动角/(°)
0 152.80 8.0
200 150.97 6.0
400 152.47 7.5
600 150.35 6.5
800 151.25 7.2
1 200 153.75 7.6
1 800 150.50 7.9
2 100 152.00 7.7

图8

磨损后的3-D-SHMSL的SEM照片、XPS光谱"

图9

3-D-SHMSL不同介质中浸泡24 h后的水接触角"

表4

水接触角、滑动角和温度的关系"

温度/℃ 水接触角/(°) 滑动角/(°)
20 152.00 8.0
30 155.30 7.1
40 151.27 7.0
50 153.47 7.6
60 149.97 7.7
70 150.93 10.0
80 152.05 11.0
90 149.57 11.0

图10

水接触角和滑动角随紫外光照射时间的变化"

图11

水接触角和滑动角随洗涤次数的变化"

[1] 范浩军, 陈意, 颜俊. 人造革/合成革材料及工艺学[M]. 北京: 中国轻工业出版社, 2017:216-218.
FAN Haojun, CHEN Yi, YAN Jun. Artificial leather/synthetic leather materials and technology[M]. Beijing: China Light Industry Press, 2017: 216-218.
[2] 曹意, 陈韶娟, 尹德河, 等. 碱溶性涤纶/锦纶6海岛纤维各组分性能解析[J]. 纺织学报, 2018, 39(9):15-21.
CAO Yi, CHEN Shaojuan, YIN Dehe, et al. Analysis on components properties of alkali-soluble polyester/polyamide 6 sea island fiber[J]. Journal of Textile Research, 2018, 39(9):15-21.
doi: 10.1177/004051756903900103
[3] 祝彬. 超细纤维合成革用水性聚氨酯的研究进展[J]. 中国皮革, 2020, 49(4):32-36.
ZHU Bin. Research progress of waterborne polyurethane for superfine fiber synthetic leather[J]. China Leather, 2020, 49(4):32-36.
[4] 朵永超, 钱晓明, 赵宝宝, 等. 超细纤维合成革基布的制备及其性能[J]. 纺织学报, 2020, 41(9):81-87.
DUO Yongchao, QIAN Xiaoming, ZHAO Baobao, et al. Preparation and properties of microfiber synthetic leather base[J]. Journal of Textile Research, 2020, 41(9):81-87.
[5] DARMANIN T, GUITTARD F. Superhydrophobic and superoleophobic properties in nature[J]. Materials Today, 2015, 18(5): 273-285.
doi: 10.1016/j.mattod.2015.01.001
[6] BARTHLOTT W, NEINHUIS C. Purity of the sacred lotus, or escape from contamination in biological surfaces[J]. Planta, 1997, 202(1): 1-8.
doi: 10.1007/s004250050096
[7] LI H, FENG X, PENG L Y, et al. Durable lubricant-infused coating on a magnesium alloy substrate with anti-biofouling and anti-corrosion properties and excellent thermally assisted healing ability[J]. Nanoscale, 2020, 12(14): 7700-7711.
doi: 10.1039/c9nr10699e pmid: 32211633
[8] CASAS C, BOU J, OLLÉ L, et al. Development of nanocomposites with self-cleaning properties for textile and leather[J]. Journal of the Society of Leather Technologists and Chemists, 2018, 102(1): 33-41.
[9] XU W, ZHAO W, HAO L, et al. Synthesis of novel cationic fluoroalkyl-terminated hyperbranched polyurethane latex and morphology, physical properties of its latex film[J]. Progress in Organic Coatings, 2018, 121: 209-217.
doi: 10.1016/j.porgcoat.2018.04.034
[10] GURERA D, BHUSHAN B. Fabrication of bioinspired superliquiphobic synthetic leather with self-cleaning and low adhesion[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 545: 130-137.
doi: 10.1016/j.colsurfa.2018.02.052
[11] WEN J T, SUN Z, XIANG J, et al. Preparation and characteristics of waterborne polyurethane with various lengths of fluorinated side chains[J]. Applied Surface Science, 2019, 494: 610-618.
doi: 10.1016/j.apsusc.2019.07.170
[12] ZHOU H, CHEN Y, FAN H J, et al. The polyurethane/SiO2 nano-hybrid membrane with temperature sensitivity for water vapor permeation[J]. Journal of Membrane Science, 2008, 318(1/2): 71-78.
doi: 10.1016/j.memsci.2008.02.024
[13] MAJI K, MANNA U. Hierarchically featured and substrate independent bulk-deposition of "reactive" polymeric nanocomplexes for controlled and strategic manipulation of durable biomimicking wettability[J]. Journal of Materials Chemistry A, 2018, 6(15): 6642-6653.
doi: 10.1039/C8TA00466H
[14] LI Y, REN M, LV P, et al. A robust and flexible bulk superhydrophobic material from silicone rubber/silica gel prepared by thiol-ene photopolymerization[J]. Journal of Materials Chemistry A, 2019, 7(12): 7242-7255.
doi: 10.1039/C8TA11111A
[15] ZHU L, SHI P, XUE J, et al. Superhydrophobic stability of nanotube array surfaces under impact and static forces[J]. ACS Applied Materials and Interfaces, 2014, 6(11): 8073-8079.
doi: 10.1021/am500261c
[16] WANG H, HE M, LIU H, et al. One-step fabrication of robust superhydrophobic steel surfaces with mechanical durability, thermal stability, and anti-icing function[J]. ACS Applied Materials and Interfaces, 2019, 11(28): 25586-5594.
doi: 10.1021/acsami.9b06865
[17] XU Q F, WANG J N, SANDERSON K D. Organic-inorganic composite nanocoatings with superhydrophobicity, good transparency, and thermal stability[J]. ACS Nano, 2010, 4(4): 2201-2209.
doi: 10.1021/nn901581j pmid: 20302323
[18] PENG S, YANG X, TIAN D, et al. Chemically stable and mechanically durable superamphiphobic aluminum surface with a micro/nanoscale binary structure[J]. ACS Applied Materials and Interfaces, 2014, 6(17): 15188-15197.
doi: 10.1021/am503441x
[19] BOINOVICH L, EMELYANENKO A. A wetting experiment as a tool to study the physicochemical processes accompanying the contact of hydrophobic and superhydrophobic materials with aqueous media[J]. Advances in Colloid and Interface Science, 2012, 179-182: 133-141.
[20] YONG J, CHEN F, LI M, et al. Remarkably simple achievement of superhydrophobicity, superhydrop-hilicity, underwater superoleophobicity, underwater superoleophilicity, underwater superaerophobicity, and underwater superaerophilicity on femtosecond laser ablated PDMS surfaces[J]. Journal of Materials Chemistry A, 2017, 5(48): 25249-25257.
doi: 10.1039/C7TA07528F
[1] 石磊, 张琳炜, 刘亚, 夏磊, 庄旭品. 分离膜湿法非织造支撑体的结构设计与应用[J]. 纺织学报, 2022, 43(06): 15-21.
[2] 俞琰, 王西朝, 张瑞云, 李蓉丽, 程隆棣. 云南野生火草纤维及其绒网的结构与性能[J]. 纺织学报, 2022, 43(04): 10-14.
[3] 王建萍, 苗明珠, 沈德垚, 姚晓凤. 仿生鸟羽结构针织面料开发与性能评价[J]. 纺织学报, 2022, 43(04): 55-61.
[4] 谢爱玲, 乐昱含, 艾馨, 王亚辉, 王义容, 陈新彭, 陈国强, 邢铁玲. 茶多酚改性超疏水涤纶织物制备及其在油水分离中的应用[J]. 纺织学报, 2022, 43(02): 162-170.
[5] 朵永超, 钱晓明, 郭寻, 高龙飞, 白赫, 赵宝宝. 中空桔瓣型高收缩聚酯/聚酰胺6超细纤维非织造布的制备及其性能[J]. 纺织学报, 2022, 43(02): 98-104.
[6] 许仕林, 杨世玉, 张亚茹, 胡柳, 胡毅. 热塑性聚氨酯/特氟龙无定形氟聚物超疏水纳米纤维膜制备及其性能[J]. 纺织学报, 2021, 42(12): 42-42.
[7] 王晓辉, 刘国金, 邵建中. 纺织品仿生结构生色[J]. 纺织学报, 2021, 42(12): 1-14.
[8] 李维斌, 张程, 刘军. 超疏水棉织物制备及其在油水过滤分离中应用[J]. 纺织学报, 2021, 42(08): 109-114.
[9] 郝尚, 谢源, 翁佳丽, 张维, 姚继明. 溶解刻蚀辅助构建棉织物超疏水表面[J]. 纺织学报, 2021, 42(02): 168-173.
[10] 杨亚, 闫凤祎, 王卉, 张克勤. 丝素蛋白/磷酸八钙复合材料生物界面的蛋白质吸附和细胞响应[J]. 纺织学报, 2021, 42(02): 41-46.
[11] 朵永超, 钱晓明, 赵宝宝, 钱幺, 邹志伟. 超细纤维合成革基布的制备及其性能[J]. 纺织学报, 2020, 41(09): 81-87.
[12] 王亚停, 赵家琪, 王碧佳, 冯雪凌, 钱国春, 隋晓锋. 超细纤维合成革的染色与功能整理研究进展[J]. 纺织学报, 2020, 41(07): 188-196.
[13] 刘雷艮, 沈忠安, 林振锋, 陶金. 聚乳酸/壳聚糖/Fe3O4超细纤维膜对酸性蓝MTR的吸附性能及机制[J]. 纺织学报, 2020, 41(05): 20-24.
[14] 徐林, 任煜, 张红阳, 吴双全, 李雅, 丁志荣, 蒋文雯, 徐思峻, 臧传锋. 涤纶织物表面TiO2/氟硅烷超疏水层构筑及其性能[J]. 纺织学报, 2019, 40(12): 86-92.
[15] 张恒, 甄琪, 刘雍, 宋卫民, 刘让同, 张一风. 嵌入式聚丙烯/聚乙二醇微纳米纤维材料的结构特征及其气固过滤性能[J]. 纺织学报, 2019, 40(09): 28-34.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!