纺织学报 ›› 2022, Vol. 43 ›› Issue (07): 81-89.doi: 10.13475/j.fzxb.20210810509

• 纺织工程 • 上一篇    下一篇

层-层正交角联锁机织物及其复合材料的结构及其层切破坏机制研究

贾雪飞1, 庄毅2, 唐毓婧1(), 李姗姗3, 时文4, 张雷3, 刘明5, 周江明5   

  1. 1.中石化(北京)化工研究院有限公司, 北京 100013
    2.中国石油化工股份有限公司, 北京 100728
    3.中国纺织科学研究院有限公司 生物源纤维制造技术国家重点实验室, 北京 100025
    4.卡尔蔡司(上海)管理有限公司, 上海 200131
    5.中石化巴陵石油化工股份有限公司, 湖南 岳阳 414014
  • 收稿日期:2021-08-30 修回日期:2022-03-24 出版日期:2022-07-15 发布日期:2022-07-29
  • 通讯作者: 唐毓婧
  • 作者简介:贾雪飞(1984—),女,高级工程师,硕士。主要研究方向为高分子物理及表征。
  • 基金资助:
    中国石油化工股份有限公司科技部项目(G6001-19-ZS-0507)

Structural and laminar damage mechanisms in layer-to-layer orthogonal angle-interlock woven fabrics and composites

JIA Xuefei1, ZHUANG Yi2, TANG Yujing1(), LI Shanshan3, SHI Wen4, ZHANG Lei3, LIU Ming5, ZHOU Jiangming5   

  1. 1. SINOPEC (Beijing) Research Institute of Chemical Industry, Co., Ltd., Beijing 100013, China
    2. China Petroleum & Chemical Corporation, Beijing 100728, China
    3. State Key Laboratory of Biological Fiber Manufacturing Technology, China Textile Academy Co., Ltd., Beijing 100025, China
    4. Carle Zeiss (Shanghai) Co., Ltd., Shanghai 200131, China
    5. SINOPEC Baling Petrochemical Co., Ltd., Yueyang, Hunan 414014, China
  • Received:2021-08-30 Revised:2022-03-24 Published:2022-07-15 Online:2022-07-29
  • Contact: TANG Yujing

摘要:

采用无损高分辨率X射线成像(显微X-CT)技术对层-层正交角联锁机织物以及复合材料内部结构进行分析,并研究了层间剪切强度与结构之间的关系;通过三维重构展现了机织物的层-层正交角联锁的微观结构,观察到机织物内部的单丝扭转、挤压现象;依据机织复合材料中孔隙和高密度杂质在三维空间的分布,计算了其相应的占比。结果表明:层间剪切实验后的机织复合材料虽然宏观形貌保持了良好的完整性,但内部存在孔隙变形、分层、纤维弯曲、片层断裂等现象;层-层正交角联锁机织结构有效提高了复合材料的层间力学性能,内部的缺陷对复合材料的力学性能有较大的影响;无损高分辨X射线成像技术是研究纤维增强复合材料内部复杂结构特性的有利手段。

关键词: 层-层正交角联锁, 复合材料, 机织结构, 缺陷, 显微CT, 层间剪切

Abstract:

In order to analyze the internal structure and the load bearing of layer-to-layer orthogonal angle-interlock woven fabrics and composites, X-ray computed tomography (Micro CT) volume pixels was used to extract non-destructively the internal structure. The micro-structure of layer-to-layer orthogonal angle-interlock the woven fabric was observed by three-dimensional reconstruction, and the twisting and extrusion of monofilaments inside the fabric was observed. The distribution of pores and high-density impurities in the composite were reconstructed and the quantitative estimations were carried out. The results show that the composite demonstrated good integrity after the laminar damage test, there are phenomena shch as pore deformation, delarmination, fiber bending and lamella fractures inside. It was confirmed that the unique structure of the layer-to-layer orthogonal angle-interlock woven fabric effectively improved the interlaminar mechanical properties of the composites, highlighting the importance of non-destructive X-ray computed tomography in analyzing the imaging data of fiber reinforced composites.

Key words: layer-to-layer orthogonal angle-interlock, composites, woven structure, defects, micro computed tomography, interlaminar shear

中图分类号: 

  • TB332

图1

机织物结构示意图"

表1

参数设置"

试样名称 物镜倍数 体素/μm 视场范围/mm 投影张数
机织物 4 5.0 Φ5.0×5.0 2 001
4 2.0 Φ2.0×2.0 2 501
4 0.7 Φ0.7×0.7 3 201
机织复合材料 0.4 30.0 Φ30.0×30.0 1 001
4 4.0 Φ4.0×4.0 2 001
20 0.5 Φ0.5×0.5 3 501

图2

5.0 μm体素分辨率下机织物的三维渲染图以及二维虚拟切片"

图3

0.7 μm体素分辨率下机织物的内部细节图"

图4

不同体素分辨率下机织复合材料三维分割渲染图、二维虚拟切片及缺陷分布图"

图5

4.0 μm体素分辨率下机织复合材料内部缺陷"

图6

机织复合材料在x轴方向的载荷-位移曲线"

图7

剪切破坏后的机织复合材料"

图8

力学破坏后的机织复合材料内部二维虚拟切片"

图9

层-层正交角联锁机织复合材料样品损伤机制"

[1] DOMINIQUE C, BRUNO J G D, FRANCOIS M P M, et al. Method of manufacturing a gas turbine casing out of composite material, and a casing as obtained thereby: US 8322971[P]. 2012-12-04.
[2] WHITENEY T J, CHOU T W. Modeling of 3-D angle-interlock textile structural composites[J]. Journal of Composite Materials, 1989, 23(9): 890-911.
doi: 10.1177/002199838902300902
[3] BYUN J H, CHOU T W. Elastic properties of three-dimensional angle-interlock fabric preforms[J]. The Journal of the Textile Institute, 1990, 81(4): 538-548.
doi: 10.1080/00405009008658727
[4] COX B N, DADKHAH M S. The macroscopic elasticity of 3D woven composites[J]. Journal of Composite Materials, 1995, 29(6): 785-819.
doi: 10.1177/002199839502900606
[5] PORATG I, GREENWOOD K, LI Z. CAD/CAM of three-dimensional woven structures (preforms) for fiber-reinforced composites[J]. Composites Part A: Applied Science and Manufacturing, 1996, 27(2): 111-117.
doi: 10.1016/1359-835X(95)00002-J
[6] 李姗姗, 陈利, 焦亚男, 等. 2.5维机织物接结经纱缩率的影响因素[J]. 纺织学报, 2010, 31(5): 55-58.
LI Shanshan, CHEN Li, JIAO Yanan, et al. Experimental research on influential factors of binder warp shrinkage of 2.5-D woven fabric[J]. Journal of Texile Research, 2010, 31(5): 55-58.
[7] PARDINI L C, GREGORI M L. Modeling elastic and thermal properties of 2.5D carbon fiber and carbon/SiC hybrid matrix composites by homogenization method[J]. Journal of Aerospace Technology and Management, 2010, 2(2): 183-194.
doi: 10.5028/jatm.2010.02026510
[8] 傅华东, 秦岩, 王辉, 等. 2.5D石英纤维增强硼酚醛树脂可陶瓷化复合材料的制备与烧蚀性能[J]. 复合材料学报, 2020, 37(4): 767-774.
FU Huadong, QIN Yan, WANG Hui, et al. Preparation and ablation performance of 2.5D quartz fiber reinforced boron phenolic resin ceramizable composites[J]. Acta Materiae Compositae Sinica, 2020, 37(4): 767-774.
[9] 胡银生, 余欢, 徐志锋, 等. 2.5D-Cf/Al复合材料的经向高温力学性能及其变形断裂行为[J]. 中国有色金属学报, 2020, 30(3): 507-517.
HU Yinsheng, YU Huan, XU Zhifeng, et al. High temperature mechanical properties and deformation fracture behavior in warp direction of 2.5D-Cf/Al composites[J]. The Chinese Journal of Nonferrous Metals, 2020, 30(3): 507-517.
[10] SCHELL J S U, RENGGLI M, VAN L G H, et al. Micro-computed tomography determination of glass fibre reinforced polymer meso-structure[J]. Composites Science and Technology, 2006, 66(13): 2016-2022.
doi: 10.1016/j.compscitech.2006.01.003
[11] 曹海建, 钱坤, 盛东晓. 2.5D 机织复合材料结构与力学性能关系的研究[J]. 玻璃钢/复合材料, 2009(3): 13-15.
CAO Haijian, QIAN Kun, SHENG Dongxiao. Study on the ralationship between structrure and mechanical properties of 2.5D woven composites[J]. Fiber Reiforced Plastics /Composites, 2009(3): 13-15.
[12] ZHAO S, JAKOB W, MARSCHNER S, et al. Building volumetric appearance models of fabric using micro CT imaging[J]. Communications of the ACM, 2014, 57(11): 98-105.
[13] 须颖, 邹晶, 姚淑艳. X射线三维显微镜及其典型应用[J]. CT理论与应用研究, 2014, 23(6): 967-977.
XU Ying, ZOU Jing, YAO Shuyan. 3D X-ray microscope and its typical applications[J]. Computerized Tomography Theory and Applications, 2014, 23(6): 967-977.
[14] 杨彩云, 李嘉禄. 复合材料用3D角联锁结构预制件的结构设计及新型织造技术[J]. 东华大学学报(自然科学版), 2005, 31(5): 53-58.
YANG Caiyun, LI Jialu. The structural design and new weaving technique of 3D angle-interlock preforms for composites[J]. Journal of Donghua Univer-sity (Natural Science), 2005, 31(5): 53-58.
[15] ZHANG DT, CHEN L, WANG YJ, et al. Stress field distribution of warp-reinforced 2.5D woven composites using an idealized meso-scale voxel-based model[J]. Journal of Materials Science, 2017, 52(11): 6814-6836.
doi: 10.1007/s10853-017-0921-0
[16] 李小丽, 陈新波, 单柏荣, 等. 飞机复合材料分层缺陷的CT与X射线检测对比试验研究[J]. 无损探伤, 2020, 44(5): 41-43.
LI Xiaoli, CHEN Xinbo, SHAN Borong, et al. Comparative experimental study on CT and X-ray detection of delamination defective in aircraft composite materials[J]. Nondestructive Testing Technology, 2020, 44(5): 41-43.
[17] HEARLE J W S. The structural mechanics of fibers[J]. Journal of Polymer Science Part C: Polymer Symposia, 2007, 20(1): 215-251.
doi: 10.1002/polc.5070200118
[18] XIAO Zhitao, NIE Xinxin, ZHANG Fang, et al. Recognition for woven fabric pattern based on gradient histogram[J]. Journal of The Textile Institute, 2014, 105(7):744-752.
doi: 10.1080/00405000.2013.847542
[19] 李鸣超. 2.5D机织物的织造工艺设计与下机分析[D]. 上海: 东华大学, 2016:10-12.
LI Mingchao. Weaving process design and analysis leave the machine of 2.5D woven fabric[D]. Shanghai: Donghua University, 2016:10-12.
[20] 李姗姗, 杨桂.层间交织板材织物及其织造方法:201410490331.8[P]. 2014-09-23.
LI Shanshan, YANG Jia. Interlayer interleaving plate fabric and weaving method thereof:201410490331.8[P]. 2014-09-23.
[21] 张超, 许希武. 二维二轴织造复合材料几何模型及弹性性能预测[J]. 复合材料学报, 2010, 27(5): 129-135.
ZHANG Chao, XU Xiwu. Geometrical model and elastic properties prediction of 2D biaxial braided composites[J]. Acta Materiae Compositae Sinica, 2010, 27(5): 129-135.
[22] 孙颖, 李嘉禄, 亢一澜, 等. 三维四向编织复合材料刚度的细观力学设计[J]. 纺织学报, 2007, 28(5): 70-73.
SUN Ying, LI Jialu, KANG Yilan, et al. Stiffness optimization of 3D braided composites with micromechanical method[J]. Journal of Textile Research, 2007, 28(5): 70-73.
[23] WANG Y G, WANG H J, WEI J H, et al. Finite element analysis of grinding process of long fiber reinforced ceramic matrix woven composites: modeling, experimental verification and material removal mechanism[J]. Ceramics International, 2019, 45(13): 15920-15927.
doi: 10.1016/j.ceramint.2019.05.100
[24] 路怀玉. 2.5维织造复合材料的强度研究[D]. 哈尔滨: 哈尔滨工业大学, 2014: 40-52.
LU Huaiyu. Strength research of 2.5D braided composites[D]. Harbin: Harbin Institute of Technology, 2014: 40-52.
[25] 王浩, 王中伟. 纤维织物复合材料组分材料体分比的显微CT实验测定法[J]. 国防科技大学学报, 2017(3): 185-193.
WANG Hao, WANG Zhongwei. Volume fraction measurement for component material of textile composite using micro CT experiments[J]. Journal of National University of Defense Technology, 2017(3): 185-193.
[26] DESPLENTERE F, LOMOV S V, WOERDEMAN D L, et al. Micro-CT characterization of variability in 3D textile architecture[J]. Composites Science and Technology, 2005, 65(13): 1920-1930.
doi: 10.1016/j.compscitech.2005.04.008
[27] MADRA A, HAJJ N E, BENZEGGAGH M. X-ray microtomography applications for quantitative and qualitative analysis of porosity in woven glass fiber reinforced thermoplastic[J]. Composites Science and Technology, 2014, 95: 50-58.
doi: 10.1016/j.compscitech.2014.02.009
[28] 王雅娜, 曾安民, 陈新文, 等. 2.5D机织石英纤维增强树脂复合材料不同方向力学性能测试与模量预测[J]. 复合材料学报, 2019, 36(6): 1364-1373.
WANG Yana, ZENG Anmin, CHEN Xinwen, et al. Mechanical properties testing for 2.5D quartz fiber reinforced resin composites in different directions and module prediction[J]. Acta Materiae Compositae Sinica, 2019, 36(6): 1364-1373.
[29] 吕青泉, 赵振强, 李超, 等. 2.5D机织复合材料的渐进损伤与失效模拟[J]. 复合材料学报, 2020, 38(8): 2747-2757.
LÜ Qingquan, ZHAO Zhenqiang, LI Chao, et al. Progressive damage and failure simulation of 2.5D woven composites[J]. Acta Materiae Compositae Sinica, 2020, 38(8): 2747-2757.
[30] 封端佩, 商元元, 李俊. 三维四向和五向织造复合材料冲击断裂行为的多尺度模拟[J]. 纺织学报, 2020, 41(10): 67-73.
FENG Duanpei, SHANG Yuanyuan, LI Jun. Multi-scale simulation of impact failure behavior for 4-and 5-directional 3-D braided composites[J]. Journal of Textile Research, 2020, 41(10): 67-73.
[31] DALAQ A S, BARTHELAT F. Three-dimensional laser engraving for fabrication of tough glass-based bioinspired materials[J]. JOM, 2020, 72: 1487-1497.
doi: 10.1007/s11837-019-04001-w
[32] 喻寅, 王文强, 杨佳, 等. 多孔脆性介质冲击波压缩破坏的细观机理和图像[J]. 物理学报, 2012, 61(4): 1-7.
YU Yin, WANG Wenqiang, YANG Jia, et al. Mesoscopic picture of fracture in porous brittle material under shock wave compression[J]. Acta Physica Sinica, 2012, 61(4): 1-7.
[33] 田宏伟, 郭伟国. 平纹机织玻璃纤维增强复合材料面内压缩力学行为及破坏机制[J]. 复合材料学报, 2010, 27(2): 133-140.
TIAN Hongwei, GUO Weiguo. In-plane compressive mechanics behavior and failure mechanism for SW200/LWR-2 glass-woven composite[J]. Acta Materiae Compositae Sinica, 2010, 27(2): 133-140.
[1] 竺铝涛, 郝丽, 沈伟, 祝成炎. 基于边界效应模型的玻璃纤维复合材料准脆性断裂性能分析[J]. 纺织学报, 2022, 43(07): 75-80.
[2] 郭珊珊, 郝恩全, 李宏杰, 王霖琳, 蒋金华, 陈南梁. 聚氯乙烯膜结构复合材料的光氧老化行为及评价[J]. 纺织学报, 2022, 43(06): 1-8.
[3] 宫学斌, 刘元军, 赵晓明. 热防护用气凝胶材料的研究进展[J]. 纺织学报, 2022, 43(06): 187-196.
[4] 黄耀丽, 陆诚, 蒋金华, 陈南梁, 邵慧奇. 聚酰亚胺纤维增强聚二甲基硅氧烷柔性复合膜的热力学性能[J]. 纺织学报, 2022, 43(06): 22-28.
[5] 邵灵达, 黄锦波, 金肖克, 田伟, 祝成炎. 硅烷偶联剂改性处理对玻璃纤维织物增强聚苯硫醚复合材料性能的影响[J]. 纺织学报, 2022, 43(04): 68-73.
[6] 禄倩倩, 唐俊雄, 刘元军, 赵晓明. 碳纳米管基吸波复合材料的制备及其在纺织领域的应用研究进展[J]. 纺织学报, 2022, 43(04): 187-193.
[7] 叶伟, 余进, 龙啸云, 孙启龙, 马岩. 丝瓜络基碳材料的电磁波吸收性能[J]. 纺织学报, 2022, 43(04): 33-39.
[8] 谷元慧, 周红涛, 张典堂, 刘景艳, 王曙东. 碳纤维增强编织复合材料圆管的扭转力学性能及其损伤机制[J]. 纺织学报, 2022, 43(03): 95-102.
[9] 李珍珍, 支超, 余灵婕, 朱海, 杜明娟. 废棉再生气凝胶/经编间隔织物复合材料的制备及其性能[J]. 纺织学报, 2022, 43(01): 167-171.
[10] 强荣, 冯帅博, 李婉莹, 尹琳芝, 马茜, 陈博文, 陈熠. 生物质衍生磁性碳基复合材料的制备及其吸波性能[J]. 纺织学报, 2022, 43(01): 21-27.
[11] 吕丽华, 李臻, 张多多. 废弃秸秆/聚己内酯吸声复合材料的制备与性能[J]. 纺织学报, 2022, 43(01): 28-35.
[12] 李博, 樊威, 高兴忠, 王淑娟, 李志虎. 碳纤维增强类玻璃环氧高分子复合材料闭环回收利用[J]. 纺织学报, 2022, 43(01): 15-20.
[13] 袁琼, 邱海鹏, 谢巍杰, 王岭, 王晓猛, 张典堂, 钱坤. 三维六向编织SiCf/SiC复合材料的力学行为及其损伤机制[J]. 纺织学报, 2021, 42(12): 81-89.
[14] 陈海鸟, 田伟, 金肖克, 张红霞, 李艳清, 祝成炎. 基于三维显微成像的毛竹横截面结构表征[J]. 纺织学报, 2021, 42(12): 49-54.
[15] 魏小玲, 李瑞雪, 秦卓, 胡新荣, 林富生, 刘泠杉, 龚小舟. 经向T结构预制体成型关键技术[J]. 纺织学报, 2021, 42(11): 51-55.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 赵良臣;闻涛. 旋转组织设计的数学原理[J]. 纺织学报, 2003, 24(06): 33 -34 .
[2] 曹建达;顾小军;殷联甫. 用BP神经网络预测棉织物的手感[J]. 纺织学报, 2003, 24(06): 35 -36 .
[3] 【作者单位】:中国纺织工程学会秘书处【分类号】:+【DOI】:cnki:ISSN:0-.0.00-0-0【正文快照】:  香港桑麻基金会设立的“桑麻纺织科技奖” 0 0 年提名推荐工作;在纺织方面院士;专家和有关单位的大力支持下;收到了 个单位 (人 )推荐的 位候选人的. 2003年桑麻纺织科技奖获奖名单[J]. 纺织学报, 2003, 24(06): 107 .
[4] 【分类号】:Z【DOI】:cnki:ISSN:0-.0.00-0-0【正文快照】:  一;纺 纱模糊控制纺纱张力的研究周光茜等 ( - )………………原棉含杂与除杂效果评价方法的研究于永玲 ( - )……网络长丝纱免浆免捻功能的结构表征方法李栋高等 ( - )……………. 2003年纺织学报第二十四卷总目次[J]. 纺织学报, 2003, 24(06): 109 -620 .
[5] 朱敏;周翔. 准分子激光对聚合物材料的表面改性处理[J]. 纺织学报, 2004, 25(01): 1 -9 .
[6] 黄立新. Optim纤维及产品的开发与应用[J]. 纺织学报, 2004, 25(02): 101 -102 .
[7] 邓炳耀;晏雄. 热压对芳纶非织造布机械性能的影响[J]. 纺织学报, 2004, 25(02): 103 -104 .
[8] 张治国;尹红;陈志荣. 纤维前处理用精练助剂研究进展[J]. 纺织学报, 2004, 25(02): 105 -107 .
[9] 秦元春. 纺织工业发展方向初探[J]. 纺织学报, 2004, 25(02): 108 -110 .
[10] 高伟江;魏文斌. 纺织业发展的战略取向——从比较优势到竞争优势[J]. 纺织学报, 2004, 25(02): 111 -113 .