纺织学报 ›› 2022, Vol. 43 ›› Issue (01): 36-42.doi: 10.13475/j.fzxb.20210902207
DING Qian1,2, DENG Bingyao1, LI Haoxuan1()
摘要:
太阳光驱动界面水蒸发技术可将吸收的太阳光转换成热能,并加热处于液-气界面的水,有效提高光-蒸汽转换效率,有望成为低碳、绿色环境下的海水淡化新途径。为解决这项技术中存在的蒸发速率偏低、蒸汽收集困难以及抗生物沉积能力弱等问题的挑战,综述了国内外光驱动界面水蒸发的研究进展及纤维基蒸发器的独特优势;从光吸收体、漂浮体的设计与制备角度出发,分析纤维基漂浮体与光吸收体的构效关系、水传输和热管理的设计及作用机制,重点阐述纯有机光热纤维在海水淡化领域的最新应用;最后展望了纤维基蒸发器的发展前景与挑战,以期纤维基光驱动界面蒸发系统在规模化零碳排放的海水淡化等领域快速发展。
中图分类号:
[1] |
VOROSMARTY C J, GREEN P, SALISBURY J, et al. Global water resources:vulnerability from climate change and population growth[J]. Science, 2000, 289(5477): 284-288.
doi: 10.1126/science.289.5477.284 |
[2] |
RODELL M, FAMIGLIETTI J S, WIESE D N, et al. Emerging trends in global freshwater availability[J]. Nature, 2018, 557(7739): 651-659.
doi: 10.1038/s41586-018-0123-1 |
[3] | 魏天骐, 李秀强, 李金磊, 等. 界面光蒸汽转化研究进展[J]. 科学通报, 2018, 63(14): 1404-1416. |
WEI Tianqi, LI Xiuqiang, LI Jinlei, et al. Interfacial solar vapor generation[J]. Science Bulletin, 2018, 63(14): 1404-1416.
doi: 10.1016/j.scib.2018.10.005 |
|
[4] |
SHANNON M A, BOHN P W, ELIMELECH M, et al. Science and technology for water purification in the coming decades[J]. Nature, 2008, 452(7158): 301-310.
doi: 10.1038/nature06599 |
[5] |
TAO P, NI G, SONG C, et al. Solar-driven interfacial evaporation[J]. Nature Energy, 2018, 3(12): 1031-1041.
doi: 10.1038/s41560-018-0260-7 |
[6] |
GAO M M, ZHU L L, PEH C K, et al. Solar absorber material and system designs for photothermal water vaporization towards clean water and energy production[J]. Energy Environmental Science, 2019, 12(3): 841-864.
doi: 10.1039/C8EE01146J |
[7] |
ZHOU L, LI X, NI G, et al. The revival of thermal utilization from the sun: interfacial solar vapor generation[J]. National Science Review, 2019, 6(3): 562-578.
doi: 10.1093/nsr/nwz030 |
[8] | 梁洁, 刘鑫, 周林. 等离激元光热效应的新应用:太阳能蒸气产生[J]. 激光与光电子学进展, 2019, 56(20): 67-79. |
LIANG Jie, LIU Xin, ZHOU Lin. Application of plasmon photothermal effect in solar vapor generation[J]. Laser & Optoelectronics Progress, 2019, 56(20): 67-79. | |
[9] |
JUN Y S, WU X H, GHIM D, et al. Photothermal membrane water treatment for two worlds[J]. Accounts of Chemical Research, 2019, 52(5): 1215-1225.
doi: 10.1021/acs.accounts.9b00012 |
[10] |
ZHOU X Y, GUO Y H, ZHAO F, et al. Hydrogels as an emerging material platform for solar water purification[J]. Accounts of Chemical Research, 2019, 52(11): 3244-3253.
doi: 10.1021/acs.accounts.9b00455 |
[11] | 李习标, 关昌峰, 阎华, 等. 碳基材料光热水蒸发研究进展[J]. 化工新型材料, 2021, 49(8): 21-27. |
LI Xibiao, GUAN Changfeng, YAN Hua, et al. Research progress on carbon based materials for solar steam generation[J]. New Chemical Materials, 2021, 49(8): 21-27. | |
[12] |
郝亮, 刘宁, 牛冉, 等. 基于柔性多孔碳/纸浆纤维膜的高性能耐盐太阳能界面蒸发[J]. 中国科学:材料, 2021.DOI : 10.1007/s40843-021-1721-6.
doi: 10.1007/s40843-021-1721-6 |
HAO Liang, LIU Ning, NIU Ran, et al. High-performance salt-resistant solar interfacial evaporation by flexible robust porous carbon/pulp fiber membrane[J]. Science China Materials, 2021.DOI: 10.1007/s40843-021-1721-6.
doi: 10.1007/s40843-021-1721-6 |
|
[13] |
CHEN C J, HU L B. Nanoscale ion regulation in wood-based structures and their device applications[J]. Advanced Materials, 2021.DOI: 10.1002/adma.202002890.
doi: 10.1002/adma.202002890 |
[14] |
XU N, HU X Z, XU W C, et al. Mushrooms as efficient solar steam-generation devices[J]. Advanced Materials, 2017.DOI: 10.1002/adma.201606762.
doi: 10.1002/adma.201606762 |
[15] |
ZHAO F, GUO Y, ZHOU X, et al. Materials for solar-powered water evaporation[J]. Nature Reviews Materials, 2020, 5(5): 388-401.
doi: 10.1038/s41578-020-0182-4 |
[16] | 李政通, 王成兵. 多尺度Ag/CuO复合光热材料的制备及在海水淡化中的应用[J]. 无机化学学报, 2020, 36(8): 1457-1464. |
LI Zhengtong, WANG Chengbing. Multi-scale Ag/CuO photothermal materials: preparation and application in seawater desalination[J]. Chinese Journal of Inorganic Chemistry, 2020, 36(8): 1457-1464. | |
[17] |
TIAN S, HUANG Z M, TAN J H, et al. Manipulating interfacial charge-transfer absorption of cocrystal absorber for efficient solar seawater desalination and water purification[J]. ACS Energy Letters, 2020, 5(8): 2698-2705.
doi: 10.1021/acsenergylett.0c01466 |
[18] |
WU X, GAO T, HAN C H, et al. A photothermal reservoir for highly efficient solar steam generation without bulk water[J]. Science Bulletin, 2019, 64(21): 1625-1633.
doi: 10.1016/j.scib.2019.08.022 |
[19] |
SHI Y, LI R Y, IN Y, et al. A 3D photo thermal structure toward improved energy efficiency in solar steam generation[J]. Joule, 2020, 2(6): 1171-1186.
doi: 10.1016/j.joule.2018.03.013 |
[20] |
WANG Y, WANG C, SONG X, et al. Improved light-harvesting and thermal management for efficient solar-driven water evaporation using 3D photothermal cones[J]. Journal of Materials Chemistry A, 2018, 6(21): 9874-9881.
doi: 10.1039/C8TA01469H |
[21] |
LI Y, FAN J, WANG R, et al. 3D tree-shaped hierarchical flax fabric for highly efficient solar steam generation[J]. Journal of Materials Chemistry A, 2021, 9(4): 2248-2258.
doi: 10.1039/D0TA09570B |
[22] |
CHEN C, KUANG Y, HU L. Challenges and opportunities for solar evaporation[J]. Joule, 2020, 3(3): 683-718.
doi: 10.1016/j.joule.2018.12.023 |
[23] |
ZHOU J, GU Y, LIU P, et al. Development and evolution of the system structure for highly efficient solar steam generation from zero to three dimensions[J]. Advanced Functional Materials, 2019.DOI: 10.1002/adfm.201903255.
doi: 10.1002/adfm.201903255 |
[24] |
XU W C, HU X Z, ZHUANG S L, et al. Flexible and salt resistant Janus absorbers by electrospinning for stable and efficient solar desalination[J]. Advanced Energy Materials, 2018, 8(14): 1702884.
doi: 10.1002/aenm.v8.14 |
[25] |
WANG Y, WU X, SHAO B, et al. Boosting solar steam generation by structure enhanced energy management[J]. Science Bulletin, 2020, 65(16): 1380-1388.
doi: 10.1016/j.scib.2020.04.036 |
[26] |
LI J, WANG X, LIN Z, et al. Over 10 kg/(m·h) evaporation rate enabled by a 3D interconnected porous carbon foam[J]. Joule, 2020, 4(4): 1-10.
doi: 10.1016/j.joule.2019.10.011 |
[27] |
WANG F Y, XU N, ZHAO W, et al. A high-performing single-stage invert-structure solar water purifier through enhanced absorption and condensation[J]. Joule, 2021, 5(6): 1602-1612.
doi: 10.1016/j.joule.2021.04.009 |
[28] |
WU T, LI H X, XIE M H, et al. Incorporation of gold nanocages into electrospun nanofibers for efficient water evaporation through photothermal heating[J]. Materials Today Energy, 2019, 12:129-135.
doi: 10.1016/j.mtener.2018.12.008 |
[29] |
ZHU Y, TIAN G, LIU Y, et al. Low-cost,unsinkable,and highly efficient solar evaporators based on coating MWCNTs on nonwovens with unidirectional water-transfer[J]. Advanced Science, 2021.DOI : 10.1002/advs.202101727.
doi: 10.1002/advs.202101727 |
[30] |
ZHANG Q, XIAO X, ZHAO G, et al. An all-in-one and scalable carbon fibre-based evaporator by using the weaving craft for high-efficiency and stable solar desalination[J]. Journal of Materials Chemistry A, 2021, 9(17): 10945-10952.
doi: 10.1039/D1TA01295A |
[31] |
WANG F, WEI D, LI Y, et al. Chitosan/reduced graphene oxide-modified spacer fabric as a salt-resistant solar absorber for efficient solar steam generation[J]. Journal of Materials Chemistry A, 2019, 7(31): 18311-18317.
doi: 10.1039/C9TA05859A |
[32] | 陈亚丽, 赵国猛, 任李培, 等. 芳纶织物基界面光热蒸发材料的制备及其性能[J]. 纺织学报, 2021, 42(8): 115-121. |
CHEN Yali, ZHAO Guomeng, REN Lipei, et al. Preparation and performance of aramid fabric-based interfacial photothermal evaporation materials[J]. Journal of Textile Research, 2021, 42(8): 115-121. | |
[33] | LI H, WEN H, LI J, et al. Doping AIE photothermal molecule into all-fiber aerogel with self-pumping water function for efficiency solar steam generation[J]. ACS Applied Materials & Interfaces, 2020, 12(23): 26033-26040. |
[34] |
LI H, WEN H, ZHANG Z, et al. Inverse thinking of aggregation-induced emission principle:amplifying molecular motions to boost photothermal efficiency of nanofibers[J]. Angewandte Chemie International Edition, 2020, 59(46): 20371-20375.
doi: 10.1002/anie.v59.46 |
[35] |
LI H, ZHU W, LI M, et al. Side area-assisted 3D evaporator with antibiofouling function for ultra-efficient solar steam generation[J]. Advanced Materials, 2021.DOI: 10.1002/adma.202102258.
doi: 10.1002/adma.202102258 |
[1] | 朱斐超, 张宇静, 张强, 叶翔宇, 张恒, 汪伦合, 黄瑞杰, 刘国金, 于斌. 聚乳酸基生物可降解熔喷非织造材料的研究进展与展望[J]. 纺织学报, 2022, 43(01): 49-57. |
[2] | 葛灿, 张传雄, 方剑. 界面光热转换水蒸发系统用纤维材料的研究进展[J]. 纺织学报, 2021, 42(12): 166-173. |
[3] | 柳洋, 夏兆鹏, 王亮, 范杰, 曾强, 刘雍. 医用防护服的发展现状及趋势[J]. 纺织学报, 2021, 42(09): 195-202. |
[4] | 陈亚丽, 赵国猛, 任李培, 潘露琪, 陈贝, 肖杏芳, 徐卫林. 芳纶织物基界面光热蒸发材料的制备及其性能[J]. 纺织学报, 2021, 42(08): 115-121. |
[5] | 孙焕惟, 张恒, 甄琪, 朱斐超, 钱晓明, 崔景强, 张一风. 丙烯基纳微米弹性过滤材料的熔喷成型及其过滤性能[J]. 纺织学报, 2020, 41(10): 20-28. |
[6] | 张凌云, 钱晓明, 邹驰, 邹志伟. SiO2气凝胶/聚酯-聚乙烯双组分纤维复合保暖材料的制备及其性能[J]. 纺织学报, 2020, 41(08): 22-26. |
[7] | 陈诗萍, 陈旻, 魏岑, 王富军, 王璐. 医用防护服的构效特点及其研发趋势[J]. 纺织学报, 2020, 41(08): 179-187. |
[8] | 安琪, 付译鋆, 张瑜, 张伟, 王璐, 李大伟. 医用防护服用非织造材料的研究进展[J]. 纺织学报, 2020, 41(08): 188-196. |
[9] | 甄琪, 张恒, 朱斐超, 史建宏, 刘雍, 张一风. 聚丙烯/聚酯双组分微纳米纤维熔喷非织造材料制备及其性能[J]. 纺织学报, 2020, 41(02): 26-32. |
[10] | 刘禹豪, 孙辉, 王捷琪, 于斌. TiO2/MIL-88B(Fe)/聚丙烯复合熔喷非织造材料的制备及其性能[J]. 纺织学报, 2020, 41(02): 95-102. |
[11] | 张恒, 甄琪, 刘雍, 宋卫民, 刘让同, 张一风. 嵌入式聚丙烯/聚乙二醇微纳米纤维材料的结构特征及其气固过滤性能[J]. 纺织学报, 2019, 40(09): 28-34. |
[12] | 齐国瑞, 柯勤飞, 李祖安, 黄族健, 靳向煜, 黄晨. 纯棉水刺非织造材料的单向导水无氟整理[J]. 纺织学报, 2019, 40(07): 119-127. |
[13] | 邹志伟, 钱晓明, 钱幺, 赵宝宝, 朵永超. 油剂去除对针刺非织造过滤材料驻极性能的影响[J]. 纺织学报, 2019, 40(06): 79-84. |
[14] | 张恒, 申屠宝卿, 章伟, 张一风, 崔国士. 聚乙二醇/聚丙烯熔喷非织造材料的叶脉仿生结构及其保液性能[J]. 纺织学报, 2019, 40(05): 18-23. |
[15] | 赵宝宝 钱幺 钱晓明 范金土 朵永超. 梯度结构双组分纺粘水刺非织造材料的制备及其性能[J]. 纺织学报, 2018, 39(05): 56-61. |
|