纺织学报 ›› 2022, Vol. 43 ›› Issue (01): 153-160.doi: 10.13475/j.fzxb.20210904808
韩之欣1,2, 吴伟1,2, 王健3, 徐红1,2,4, 毛志平1,2,4,5()
HAN Zhixin1,2, WU Wei1,2, WANG Jian3, XU Hong1,2,4, MAO Zhiping1,2,4,5()
摘要:
为更好地筛选适用于超临界二氧化碳(ScCO2)流体染色的分散染料,使用状态方程结合基团贡献法和计算化学法,得到不同工况条件及不同染料结构对分散染料在超临界CO2流体中溶解度的影响规律,建立了分散染料在超临界CO2流体中溶解度预测方法。结果表明:不同工况条件会影响分散蓝79染料的溶解度,其中较低的温度和较高的压力对溶解过程更有利;从分子结构来看,蒽醌染料分子平面性更好,有利于π-π堆积,故蒽醌类分散染料在超临界CO2流体中的溶解度比偶氮染料更低;降低染料内部分子间相互作用或提高染料与ScCO2流体间相互作用均可有效提高分散染料溶解性,故在染料分子结构中引入烷基或含C=O的基团可提高染料在ScCO2流体中的溶解性。
中图分类号:
[1] | 郑环达, 郑来久. 超临界流体染整技术研究进展[J]. 纺织学报, 2015, 36(9): 141-146. |
ZHENG Huanda, ZHENG Laijiu. Research development of supercritical fluid dyeing and finishing[J]. Journal of Textile Research, 2015, 36(9): 141-146. | |
[2] | 王纯怡, 吴伟, 王建, 等. C.I.分散棕19在超临界CO2及水中溶解性的分子动力学模拟[J]. 纺织学报, 2020, 41(9): 95-101. |
WANG Chunyi, WU Wei, WANG Jian, et al. Molecular dynamics simulation of solubility of C.I. Disperse Brown 19 in supercritical CO2 and water[J]. Journal of Textile Research, 2020, 41(9): 95-101. | |
[3] |
WU J S, ZHAO H J, WANG M Y, et al. A novel natural dye derivative for natural fabric supercritical carbon dioxide dyeing technology[J]. Fibers and Polymers, 2019, 20(11): 2376-2382.
doi: 10.1007/s12221-019-9029-2 |
[4] | 胡金花, 闫俊, 李红, 等. 分散红11在超临界二氧化碳中的溶解度及其模型拟合[J]. 纺织学报, 2019, 40(8): 80-85. |
HU Jinhua, YAN Jun, LI Hong, et al. Solubility of Dispersed Red 11 in supercritical carbon dioxide and model fitting[J]. Journal of Textile Research, 2019, 40(8): 80-85. | |
[5] |
TAMURA K, ALWI R S. Solubility of anthraquinone derivatives in supercritical carbon dioxide[J]. Dyes and Pigments, 2015, 113:351-356.
doi: 10.1016/j.dyepig.2014.09.003 |
[6] |
HOSSEIN R, NADER H L. A new simple model for calculation of solubilities of derivatized anthraquinone compounds in supercritical carbon dioxide[J]. Chemical Papers, 2020, 74(3): 985-993.
doi: 10.1007/s11696-019-00936-1 |
[7] |
BAGHERI H, MANSOORI A G, HASHEMIPOUR H. A novel approach to predict drugs solubility in supercritical solvents for ress process using various cubic eos-mixing rule[J]. Journal of Molecular Liquids, 2018, 261:174-188.
doi: 10.1016/j.molliq.2018.03.081 |
[8] |
ALWI R S, GARLAPATI C, TAMURA K. Solubility of anthraquinone derivatives in supercritical carbon dioxide: new correlations[J]. Molecules, 2021, 26(2): 460.
doi: 10.3390/molecules26020460 |
[9] | KONG X, HUANG T, CUI H, et al. Multicomponent system of trichromatic disperse dye solubility in supercritical carbon dioxide[J]. Journal of CO2 Utilization, 2019, 33:1-11. |
[10] |
MCDONAGH J L, PALMER D S, MOURIK T, et al. Are the sublimation thermodynamics of organic molecules predictable?[J]. Journal of Chemical Information and Modeling, 2016, 56(11): 2162-2179.
doi: 10.1021/acs.jcim.6b00033 |
[11] | 陈钟秀, 顾飞燕, 胡望明. 化工热力学[M]. 2版. 北京: 化学工业出版社, 2001:10-40. |
CHEN Zhongxiu, GU Feiyan, HU Wangming. Chemical thermodynamics[M]. 2nd ed. Beijing: Chemical Industry Press, 2001:10-40. | |
[12] |
JOBACK K G, REID R. Estimation of pure-component properties from group-contributions[J]. Chemical Engineering Communications, 1987, 57(1-6): 233-243.
doi: 10.1080/00986448708960487 |
[13] | MATTEO A, JOSEPH B P, PHILIP B C. Absolute alchemical free energy calculations for ligand binding: a beginner's guide[J]. Methods in Molecular Biology, 2018, 1762:199-232. |
[14] |
VAN DER SPOEL D, LINDAHL E, HESS B, et al. Gromacs: fast, flexible, and free[J]. Journal of Computational Chemistry, 2005, 26(16): 1701-1718.
doi: 10.1002/(ISSN)1096-987X |
[15] |
JORGENSEN W L, MAXWELL D S, TIRADORIVERS J. Development and testing of the opls all-atom force field on conformational energetics and properties of organic liquids[J]. Journal of the American Chemical Society, 1996, 118(45): 11225-11236.
doi: 10.1021/ja9621760 |
[16] |
LU T, CHEN F. Multiwfn: a multifunctional wavefunction analyzer[J]. Journal of Computational Chemistry, 2012, 33(5): 580-592.
doi: 10.1002/jcc.v33.5 |
[17] |
STEPHENS P J, DEVLIN F J, CHABALOWSKI C F, et al. Abinitio calculation of vibrational absorption and circular dichroism spectra using density functional force fields[J]. The Journal of Physical Chemistry, 1994, 98(45): 11623-11627.
doi: 10.1021/j100096a001 |
[18] |
HARIHARAN P C, POPLE J A. The influence of polarization functions on molecular orbital hydrogenation energies[J]. Theoretica Chimica Acta, 1973, 28(3): 213-222.
doi: 10.1007/BF00533485 |
[19] |
BAYLY C I, CIEPLAK P, CORNELL W D, et al. A well-behaved electrostatic potential based method using charge restraints for deriving atomic charges: the RESP model[J]. Journal of Physical Chemistry, 1993, 97(40): 10269-10280.
doi: 10.1021/j100142a004 |
[20] |
HARRIS J G, YUNG K H. Carbon dioxide's liquid-vapor coexistence curve and critical properties as predicted by a simple molecular model[J]. The Journal of Physical Chemistry, 1995, 99(31): 12021-12024.
doi: 10.1021/j100031a034 |
[21] |
SILVIO P, ENRICO B, GIORGIA B, et al. First-principle-based MD description of azobenzene molecular rods[J]. Theoretical Chemistry Accounts, 2012, 131(10): 1274.
doi: 10.1007/s00214-012-1274-z |
[22] |
GOGA N, RZEPIELA A J, DE VRIES A H, et al. Efficient algorithms for langevin and DPD dynamics[J]. Journal of Chemical Theory and Computation, 2012, 8(10): 3637-3649.
doi: 10.1021/ct3000876 |
[23] |
MARTYNA G J, TUCKERMAN M E, TOBIAS D J, et al. Explicit reversible integrators for extended systems dynamics[J]. Molecular Physics, 1996, 87(5): 1117-1157.
doi: 10.1080/00268979600100761 |
[24] | DARDEN T, YORK D, PEDERSEN L. Particle mesh ewald: an N.log(N) method for ewald sums in large systems[J]. Journal of Chemical Physics, 1993, 98(12): 10089-10092. |
[25] |
PARRINELLO M, RAHMAN A. Polymorphic transitions in single crystals: a new molecular dynamics method[J]. Journal of Applied Physics, 1981, 52(12): 7182-7190.
doi: 10.1063/1.328693 |
[26] |
HESS B, BEKKER H, BERENDSEN H J C, et al. Lincs: a linear constraint solver for molecular simulations[J]. Journal of Computational Chemistry, 1997, 18(12): 1463-1472.
doi: 10.1002/(ISSN)1096-987X |
[27] | FRANK N. Software update: the ORCA program system, version 4.0[J]. Wiley Interdisciplinary Reviews-Computational Molecular Science, 2018, 8(1): 1327. |
[28] | HUMPHREY W, DALKE A, SCHULTEN K. VMD: visual molecular dynamics[J]. Journal of Molecular Graphics & Modelling, 1996, 14(1): 33-38. |
[29] |
EVANS D J, HOLIAN B L. The nose-hoover thermostat[J]. The Journal of Chemical Physics, 1985, 83(8): 4069-4074.
doi: 10.1063/1.449071 |
[30] | BECKE A D A. Multicenter numerical-integration scheme for polyatomic-molecules[J]. Journal of Chemical Physics, 1988, 88(4): 2547-2553. |
[31] |
WEIGEND F, AHLRICHS R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: design and assessment of accuracy[J]. Physical Chemistry Chemical Physics, 2005, 7(18): 3297-3305.
doi: 10.1039/b508541a |
[32] |
EIKE C, CHRISTOPH B, STEFAN G. Extension of the D3 dispersion coefficient model[J]. Journal of Chemical Physics, 2017, 147(3): 034112.
doi: 10.1063/1.4993215 |
[33] |
WEIGEND F. Accurate coulomb-fitting basis sets for H to Rn[J]. Physical Chemistry Chemical Physics, 2006, 8(9): 1057-1065.
doi: 10.1039/b515623h |
[34] |
ERIN J R, SHAHAR K, PAULA M S, et al. Revealing noncovalent interactions[J]. Journal of the American Chemical Society, 2010, 132(18): 6498-6506.
doi: 10.1021/ja100936w |
[35] |
INGROSSO F, RUIZ-LOPEZ M F. Modeling solvation in supercritical CO2[J]. Chemphyschem, 2017, 18(19): 2560-2572.
doi: 10.1002/cphc.v18.19 |
[36] |
ETIENNE G, THIERRY T, JEAN D M, et al. Structure-property relationships in CO2-philic (Co)polymers: phase behavior, self-assembly, and stabilization of water/CO2 emulsions[J]. Chemical Reviews, 2016, 116(7): 4125-4169.
doi: 10.1021/acs.chemrev.5b00420 |
[37] | 李胜男, 赵玉萍, 郑环达, 等. 超临界CO2流体中分散染料溶解度研究进展[J]. 精细化工, 2020, 37(8): 1533-1540. |
LI Shengnan, ZHAO Yuping, ZHENG Huanda, et al. Research progress on solubility of disperse dyes in supercritical CO2 fluid[J]. Fine Chemical Industry, 2020, 37(8): 1533-1540. | |
[38] |
JULIEN J, HASSAN A, MARKUS B, et al. Facile synjournal of 1-butylamino-and 1,4-bis(butylamino)-2-alkyl-9,10-anthraquinone dyes for improved supercritical carbon dioxide dyeing[J]. Dyes and Pigments, 2020, 173:107991.
doi: 10.1016/j.dyepig.2019.107991 |
[39] |
RAI S K, GUNNAM A, MANNAVA M K C, et al. Improving the dissolution rate of the anticancer drug dabrafenib[J]. Crystal Growth & Design, 2020, 20(2): 1035-1046.
doi: 10.1021/acs.cgd.9b01365 |
[1] | 王成龙, 李立新, 吴绍明, 柴丽琴, 周岚. 染色促进剂对聚丁二酸丁二醇酯纤维分散染料染色动力学和热力学的影响[J]. 纺织学报, 2022, 43(01): 147-152. |
[2] | 潘忆乐, 钱丽颖, 徐纪刚, 何北海, 李军荣. Lyocell纤维纺丝浆粕溶解性的影响因素分析[J]. 纺织学报, 2021, 42(10): 27-33. |
[3] | 邱靖斯, 刘越. 分散染料的细化分散及其对粒径影响研究进展[J]. 纺织学报, 2021, 42(08): 194-201. |
[4] | 徐保律, 吴伟, 钟毅, 徐红, 毛志平. 有机溶剂对液体活性染料分散和水解稳定性影响的模拟研究[J]. 纺织学报, 2021, 42(02): 113-121. |
[5] | 王纯怡, 吴伟, 王健, 徐红, 毛志平. C.I.分散棕19在超临界CO2及水中溶解性的分子动力学模拟[J]. 纺织学报, 2020, 41(09): 95-101. |
[6] | 吴伟, 陈小文, 钟毅, 徐红, 毛志平. 硫酸钠在低带液轧-焙-蒸活性染料染色中的作用[J]. 纺织学报, 2020, 41(05): 85-93. |
[7] | 王小艳, 杜金梅, 彭铃淇, 荆丽丽, 许长海. 涤纶针织物碱减量和染色一浴一步法工艺[J]. 纺织学报, 2020, 41(01): 80-87. |
[8] | 刘越, 莫林祥, 陈丰. 拼混型黑色分散染料的配伍性及其染色性能[J]. 纺织学报, 2019, 40(12): 63-67. |
[9] | 艾丽, 朱亚伟. 黏合剂的合成及其在分散蓝79微水印花中的应用[J]. 纺织学报, 2019, 40(06): 50-57. |
[10] | 钱璐敏, 张斌. 可溶性止血医用棉纱布的制备及其性能[J]. 纺织学报, 2019, 40(05): 102-106. |
[11] | 武奇奇, 李敏, 刘怡宁, 王乐军, 张丽平, 付少海. 聚乳酸织物载体染色性能[J]. 纺织学报, 2019, 40(01): 79-83. |
[12] | 艾丽 曹红梅 朱亚伟 丁志平. 基于液体分散染料的微量印花技术[J]. 纺织学报, 2018, 39(09): 77-83. |
[13] | 梁静 钟毅 毛志平 徐红 张琳萍 隋晓锋. 晶型对分散染料染色性能的影响[J]. 纺织学报, 2018, 39(07): 69-73. |
[14] | 叶思佳 杜奕铃 张永高 郑今欢. 涤纶起绒织物着色烂花印花中分散染料的耐碱性[J]. 纺织学报, 2018, 39(01): 98-103. |
[15] | 王晓春 闫金龙 张丽平 赵国樑 张健飞. 超高分子质量聚乙烯纤维分散染料染色性能[J]. 纺织学报, 2017, 38(11): 84-90. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 207
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 488
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Cited |
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Shared | ||||||||||||||||||||||||||||||||||||||||||||||||||
Discussed |
|