纺织学报 ›› 2022, Vol. 43 ›› Issue (01): 153-160.doi: 10.13475/j.fzxb.20210904808

• 染整与化学品 • 上一篇    下一篇

分散染料在超临界二氧化碳流体中的溶解性

韩之欣1,2, 吴伟1,2, 王健3, 徐红1,2,4, 毛志平1,2,4,5()   

  1. 1.东华大学 生态纺织教育部重点实验室, 上海 201620
    2.东华大学 化学化工与生物工程学院, 上海 201620
    3.青岛即发集团股份有限公司, 山东 青岛 266000
    4.东华大学 纺织科技创新中心, 上海 201620
    5.东华大学 国家染整工程技术研究中心, 上海 201620
  • 收稿日期:2021-09-13 修回日期:2021-10-13 出版日期:2022-01-15 发布日期:2022-01-28
  • 通讯作者: 毛志平
  • 作者简介:韩之欣(1997—),女,硕士生。主要研究方向为超临界二氧化碳流体染色理论。
  • 基金资助:
    山东省自然科学基金重大基础研究项目(ZR2020ZD22);山东省重大科技创新工程项目(2019JZZY010406)

Study on solubility of disperse dyes in supercritical carbon dioxide fluid

HAN Zhixin1,2, WU Wei1,2, WANG Jian3, XU Hong1,2,4, MAO Zhiping1,2,4,5()   

  1. 1. Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Donghua University, Shanghai 201620, China
    2. College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
    3. Qingdao Jifa Group Co., Ltd., Qingdao, Shandong 266000, China
    4. Innovation Center for Textile Science and Technology, Donghua University, Shanghai 201620, China
    5. National Engineering Research Center for Dyeing and Finishing of Textiles, Donghua University, Shanghai 201620, China
  • Received:2021-09-13 Revised:2021-10-13 Published:2022-01-15 Online:2022-01-28
  • Contact: MAO Zhiping

摘要:

为更好地筛选适用于超临界二氧化碳(ScCO2)流体染色的分散染料,使用状态方程结合基团贡献法和计算化学法,得到不同工况条件及不同染料结构对分散染料在超临界CO2流体中溶解度的影响规律,建立了分散染料在超临界CO2流体中溶解度预测方法。结果表明:不同工况条件会影响分散蓝79染料的溶解度,其中较低的温度和较高的压力对溶解过程更有利;从分子结构来看,蒽醌染料分子平面性更好,有利于π-π堆积,故蒽醌类分散染料在超临界CO2流体中的溶解度比偶氮染料更低;降低染料内部分子间相互作用或提高染料与ScCO2流体间相互作用均可有效提高分散染料溶解性,故在染料分子结构中引入烷基或含C=O的基团可提高染料在ScCO2流体中的溶解性。

关键词: 分散染料, 超临界二氧化碳流体染色, 状态方程, 溶解性, 分子动力学模拟

Abstract:

To better screen disperse dyes suitable for supercritical carbon dioxide (ScCO2) fluid dyeing, a prediction method for assessing disperse dye solubility in supercritical CO2 fluid was established based on the use of state equation method, the group contribution method and computational chemistry method, achieving different conditions and different dye structures of disperse dye solubility in supercritical CO2 fluid. The results show that different working conditions affect the solubility of Disperse Blue 79 dyes, and lower temperature and higher pressure are more favorable to the dissolution process. From the perspective of molecular structure, the solubility of anthraquinone disperse dyes in supercritical CO2 fluid is lower than that of azo dyes because the anthraquinone dyes have better molecular flatness and are conducive to π-π stacking. The solubility of disperse dyes can be effectively improved by decreasing the interaction between molecules within dyes or increasing the interaction between dyes and ScCO2 fluid. It was concluded that introducing alkyl groups or groups containing C=O into the molecular structure of dye can improve the solubility of dye in ScCO2 fluid.

Key words: disperse dye, supercritical carbon dioxide fluid staining, equation of state, solubility, molecular dynamics simulation

中图分类号: 

  • O647.9

表1

分散蓝79的各项基础物理量预测值"

临界温
度/K
临界压
力/MPa
沸点/
K
偏心因子
ω
摩尔体积/
(cm3·mol-1)
饱和蒸汽压/MPa
363.15 K 373.15 K 383.15 K 393.15 K 403.15 K
1 332.44 1.073 57 1 052.2 0.721 7 417.2 6.544 6×10-16 2.690 3×10-15 1.019 4×10-14 3.583 1×10-14 1.175 2×10-13

表2

文献报道和计算预测的分散蓝79在不同温度和压力条件下ScCO2流体中的溶解度"

温度/K 压力/MPa 溶解度/(mol·mol-1)
模拟计算值 文献报道值
363.15 16 1.63×10-7 1.34×10-7
20 1.08×10-6 7.88×10-7
24 2.33×10-6 3.72×10-6
28 2.38×10-5
373.15 16 1.73×10-7
20 1.17×10-6
24 1.51×10-6
28 6.69×10-6
383.15 16 1.74×10-7
20 2.44×10-7
24 3.95×10-6
28 3.09×10-6
393.15 16 1.39×10-7 1.47×10-7
20 5.66×10-7 6.51×10-7
24 3.47×10-6 2.98×10-6
28 5.08×10-6
403.15 16 1.50×10-7
20 1.35×10-6
24 1.02×10-6
28 1.08×10-5

表3

计算预测的分散蓝79在ScCO2流体中的溶剂化自由能、升华自由能和溶解自由能"

温度/
K
压力/
MPa
自由能平均值/(kJ·mol-1)
溶剂化自由能 升华自由能 溶解自由能
363.15 16 -61.753 9 63.846 8 2.092 926
20 -66.605 3 -2.758 48
24 -67.710 3 -3.863 54
28 -73.340 3 -9.489 33
373.15 16 -59.171 2 61.222 27 2.051 067
20 -64.290 5 -3.068 23
24 -63.955 6 -2.733 36
28 -67.229 0 -6.010 88
383.15 16 -56.488 1 58.618 67 2.130 599
20 -56.781 1 1.833 403
24 -64.579 3 -5.960 65
28 -62.515 7 -3.897 03
393.15 16 -53.114 3 56.040 18 2.925 91
20 -56.931 8 -0.891 59
24 -61.816 7 -5.780 66
28 -61.833 4 -5.793 22
403.15 16 -50.757 6 53.482 63 2.724 99
20 -57.342 0 -3.859 36
24 -55.487 7 -2.005 02
28 -62.109 7 -8.627 04

表4

不同分散染料物理量的计算值"

分散染料 临界温
度/K
临界压
力/MPa
沸点/
K
偏心因子 饱和蒸
汽压/MPa
摩尔体积/
(cm3·mol-1)
溶剂化自由能/
(kJ·mol-1)
溶解度/
(mol·mol-1)
升华自由能/
(kJ·mol-1)
溶解自由能/
(kJ·mol-1)
分散蓝60 1 059.5 2.368 860.5 1.701 2 3.82×10-15 253.70 -47.722 9 1.04×10-9 64.964 42 17.241 520
分散蓝134 939.9 1.914 748.6 1.257 0 2.90×10-10 264.80 -32.151 5 8.20×10-7 27.304 31 -4.847 220
分散绿6:1 1 070.1 1.682 867.1 1.369 9 1.65×10-13 323.70 -41.151 1 1.05×10-8 52.339 89 11.188 780
分散紫28 964.0 3.295 745.3 1.309 3 5.67×10-11 187.50 -34.118 9 1.66×10-7 32.775 22 -1.343 660
分散红60 985.3 3.006 768.2 1.340 5 1.49×10-11 230.40 -37.115 9 1.45×10-7 37.258 27 0.142 319
分散红165 108 7.4 1.534 884.9 1.346 8 9.54×10-14 363.10 -39.573 0 4.99×10-9 54.181 67 14.608 620
分散红302 1 003.7 2.368 812.8 1.657 3 1.61×10-13 259.60 -44.022 6 1.51×10-8 52.436 17 8.413 562
分散蓝79 1 332.4 1.074 1 052.2 0.721 7 1.18×10-13 417.20 -55.487 7 1.05×10-6 53.482 63 -2.005 020
分散蓝183 1 121.0 1.389 915.6 1.308 5 3.12×10-14 331.60 -59.305 1 4.70×10-7 57.932 19 -1.377 150
分散蓝284 1 112.2 1.450 908.3 1.344 9 2.85×1 0 - 1 4 316.30 -61.737 1 7.94×10-7 58.233 57 -3.503 560
分散橙30 1 083.8 1.288 884.5 1.227 8 5.74×10-13 325.10 -53.273 3 1.36×10-6 48.166 6 -5.106 740
分散红167 1 157.9 1.091 939.2 1.006 3 5.59×10-13 387.10 -50.849 7 1.01×10-6 48.254 5 -2.595 230
分散黄163 1 097.3 1.352 894.5 1.257 3 2.03×10-13 303.00 -48.225 2 9.14×10-8 51.649 23 3.424 027

表5

不同分散染料在ScCO2流体中的溶剂化自由能及其分解"

染料
类型
染料种类 对自由能的贡献/(kJ·mol-1) 溶剂化自由能/
(kJ·mol-1)
库仑 范德华
蒽醌类 B60 -11.416 2 -36.305 3 -47.721 5
P28 -7.209 4 -26.909 4 -34.117 5
G6:1 -2.228 3 -38.921 4 -41.149 7
R302 -9.434 9 -34.586 3 -44.021 2
B134 -4.025 4 -28.126 1 -32.151 5
R165 -0.840 0 -38.733 1 -39.573 0
R60 -6.511 8 -30.605 6 -37.115 9
偶氮类 B79 -10.378 5 -45.109 2 -55.487 7
O30 -15.164 7 -38.107 2 -53.273 3
Y163 -16.479 7 -31.746 9 -48.226 6
R167 -11.253 9 -39.593 8 -50.849 7
B183 -28.542 5 -30.762 6 -59.305 1
B284 -20.940 4 -40.796 7 -61.737 1
B354 -10.372 5 -38.466 6 -48.841 9

图1

分散染料和CO2分子表面静电势"

图2

分散染料周围CO2分子的空间分布函数 注:空间分布函数等值面值:灰色0.0015,蓝色0.0020,黄色0.0025。"

图3

分散蓝79和分散绿6:1染料晶体中2个染料分子之间相互作用的约化密度梯度 RDG等值面值:分散蓝79为0.7,分散绿6:1为0.6;a和b表示模拟的不同视角。"

表6

分散染料-ScCO2流体对涤纶纱线的上染率"

染料名称 上染率/%
分散蓝60 58.8
分散蓝79 100.0
分散橙30 100.0
分散黄163 31.0
[1] 郑环达, 郑来久. 超临界流体染整技术研究进展[J]. 纺织学报, 2015, 36(9): 141-146.
ZHENG Huanda, ZHENG Laijiu. Research development of supercritical fluid dyeing and finishing[J]. Journal of Textile Research, 2015, 36(9): 141-146.
[2] 王纯怡, 吴伟, 王建, 等. C.I.分散棕19在超临界CO2及水中溶解性的分子动力学模拟[J]. 纺织学报, 2020, 41(9): 95-101.
WANG Chunyi, WU Wei, WANG Jian, et al. Molecular dynamics simulation of solubility of C.I. Disperse Brown 19 in supercritical CO2 and water[J]. Journal of Textile Research, 2020, 41(9): 95-101.
[3] WU J S, ZHAO H J, WANG M Y, et al. A novel natural dye derivative for natural fabric supercritical carbon dioxide dyeing technology[J]. Fibers and Polymers, 2019, 20(11): 2376-2382.
doi: 10.1007/s12221-019-9029-2
[4] 胡金花, 闫俊, 李红, 等. 分散红11在超临界二氧化碳中的溶解度及其模型拟合[J]. 纺织学报, 2019, 40(8): 80-85.
HU Jinhua, YAN Jun, LI Hong, et al. Solubility of Dispersed Red 11 in supercritical carbon dioxide and model fitting[J]. Journal of Textile Research, 2019, 40(8): 80-85.
[5] TAMURA K, ALWI R S. Solubility of anthraquinone derivatives in supercritical carbon dioxide[J]. Dyes and Pigments, 2015, 113:351-356.
doi: 10.1016/j.dyepig.2014.09.003
[6] HOSSEIN R, NADER H L. A new simple model for calculation of solubilities of derivatized anthraquinone compounds in supercritical carbon dioxide[J]. Chemical Papers, 2020, 74(3): 985-993.
doi: 10.1007/s11696-019-00936-1
[7] BAGHERI H, MANSOORI A G, HASHEMIPOUR H. A novel approach to predict drugs solubility in supercritical solvents for ress process using various cubic eos-mixing rule[J]. Journal of Molecular Liquids, 2018, 261:174-188.
doi: 10.1016/j.molliq.2018.03.081
[8] ALWI R S, GARLAPATI C, TAMURA K. Solubility of anthraquinone derivatives in supercritical carbon dioxide: new correlations[J]. Molecules, 2021, 26(2): 460.
doi: 10.3390/molecules26020460
[9] KONG X, HUANG T, CUI H, et al. Multicomponent system of trichromatic disperse dye solubility in supercritical carbon dioxide[J]. Journal of CO2 Utilization, 2019, 33:1-11.
[10] MCDONAGH J L, PALMER D S, MOURIK T, et al. Are the sublimation thermodynamics of organic molecules predictable?[J]. Journal of Chemical Information and Modeling, 2016, 56(11): 2162-2179.
doi: 10.1021/acs.jcim.6b00033
[11] 陈钟秀, 顾飞燕, 胡望明. 化工热力学[M]. 2版. 北京: 化学工业出版社, 2001:10-40.
CHEN Zhongxiu, GU Feiyan, HU Wangming. Chemical thermodynamics[M]. 2nd ed. Beijing: Chemical Industry Press, 2001:10-40.
[12] JOBACK K G, REID R. Estimation of pure-component properties from group-contributions[J]. Chemical Engineering Communications, 1987, 57(1-6): 233-243.
doi: 10.1080/00986448708960487
[13] MATTEO A, JOSEPH B P, PHILIP B C. Absolute alchemical free energy calculations for ligand binding: a beginner's guide[J]. Methods in Molecular Biology, 2018, 1762:199-232.
[14] VAN DER SPOEL D, LINDAHL E, HESS B, et al. Gromacs: fast, flexible, and free[J]. Journal of Computational Chemistry, 2005, 26(16): 1701-1718.
doi: 10.1002/(ISSN)1096-987X
[15] JORGENSEN W L, MAXWELL D S, TIRADORIVERS J. Development and testing of the opls all-atom force field on conformational energetics and properties of organic liquids[J]. Journal of the American Chemical Society, 1996, 118(45): 11225-11236.
doi: 10.1021/ja9621760
[16] LU T, CHEN F. Multiwfn: a multifunctional wavefunction analyzer[J]. Journal of Computational Chemistry, 2012, 33(5): 580-592.
doi: 10.1002/jcc.v33.5
[17] STEPHENS P J, DEVLIN F J, CHABALOWSKI C F, et al. Abinitio calculation of vibrational absorption and circular dichroism spectra using density functional force fields[J]. The Journal of Physical Chemistry, 1994, 98(45): 11623-11627.
doi: 10.1021/j100096a001
[18] HARIHARAN P C, POPLE J A. The influence of polarization functions on molecular orbital hydrogenation energies[J]. Theoretica Chimica Acta, 1973, 28(3): 213-222.
doi: 10.1007/BF00533485
[19] BAYLY C I, CIEPLAK P, CORNELL W D, et al. A well-behaved electrostatic potential based method using charge restraints for deriving atomic charges: the RESP model[J]. Journal of Physical Chemistry, 1993, 97(40): 10269-10280.
doi: 10.1021/j100142a004
[20] HARRIS J G, YUNG K H. Carbon dioxide's liquid-vapor coexistence curve and critical properties as predicted by a simple molecular model[J]. The Journal of Physical Chemistry, 1995, 99(31): 12021-12024.
doi: 10.1021/j100031a034
[21] SILVIO P, ENRICO B, GIORGIA B, et al. First-principle-based MD description of azobenzene molecular rods[J]. Theoretical Chemistry Accounts, 2012, 131(10): 1274.
doi: 10.1007/s00214-012-1274-z
[22] GOGA N, RZEPIELA A J, DE VRIES A H, et al. Efficient algorithms for langevin and DPD dynamics[J]. Journal of Chemical Theory and Computation, 2012, 8(10): 3637-3649.
doi: 10.1021/ct3000876
[23] MARTYNA G J, TUCKERMAN M E, TOBIAS D J, et al. Explicit reversible integrators for extended systems dynamics[J]. Molecular Physics, 1996, 87(5): 1117-1157.
doi: 10.1080/00268979600100761
[24] DARDEN T, YORK D, PEDERSEN L. Particle mesh ewald: an N.log(N) method for ewald sums in large systems[J]. Journal of Chemical Physics, 1993, 98(12): 10089-10092.
[25] PARRINELLO M, RAHMAN A. Polymorphic transitions in single crystals: a new molecular dynamics method[J]. Journal of Applied Physics, 1981, 52(12): 7182-7190.
doi: 10.1063/1.328693
[26] HESS B, BEKKER H, BERENDSEN H J C, et al. Lincs: a linear constraint solver for molecular simulations[J]. Journal of Computational Chemistry, 1997, 18(12): 1463-1472.
doi: 10.1002/(ISSN)1096-987X
[27] FRANK N. Software update: the ORCA program system, version 4.0[J]. Wiley Interdisciplinary Reviews-Computational Molecular Science, 2018, 8(1): 1327.
[28] HUMPHREY W, DALKE A, SCHULTEN K. VMD: visual molecular dynamics[J]. Journal of Molecular Graphics & Modelling, 1996, 14(1): 33-38.
[29] EVANS D J, HOLIAN B L. The nose-hoover thermostat[J]. The Journal of Chemical Physics, 1985, 83(8): 4069-4074.
doi: 10.1063/1.449071
[30] BECKE A D A. Multicenter numerical-integration scheme for polyatomic-molecules[J]. Journal of Chemical Physics, 1988, 88(4): 2547-2553.
[31] WEIGEND F, AHLRICHS R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: design and assessment of accuracy[J]. Physical Chemistry Chemical Physics, 2005, 7(18): 3297-3305.
doi: 10.1039/b508541a
[32] EIKE C, CHRISTOPH B, STEFAN G. Extension of the D3 dispersion coefficient model[J]. Journal of Chemical Physics, 2017, 147(3): 034112.
doi: 10.1063/1.4993215
[33] WEIGEND F. Accurate coulomb-fitting basis sets for H to Rn[J]. Physical Chemistry Chemical Physics, 2006, 8(9): 1057-1065.
doi: 10.1039/b515623h
[34] ERIN J R, SHAHAR K, PAULA M S, et al. Revealing noncovalent interactions[J]. Journal of the American Chemical Society, 2010, 132(18): 6498-6506.
doi: 10.1021/ja100936w
[35] INGROSSO F, RUIZ-LOPEZ M F. Modeling solvation in supercritical CO2[J]. Chemphyschem, 2017, 18(19): 2560-2572.
doi: 10.1002/cphc.v18.19
[36] ETIENNE G, THIERRY T, JEAN D M, et al. Structure-property relationships in CO2-philic (Co)polymers: phase behavior, self-assembly, and stabilization of water/CO2 emulsions[J]. Chemical Reviews, 2016, 116(7): 4125-4169.
doi: 10.1021/acs.chemrev.5b00420
[37] 李胜男, 赵玉萍, 郑环达, 等. 超临界CO2流体中分散染料溶解度研究进展[J]. 精细化工, 2020, 37(8): 1533-1540.
LI Shengnan, ZHAO Yuping, ZHENG Huanda, et al. Research progress on solubility of disperse dyes in supercritical CO2 fluid[J]. Fine Chemical Industry, 2020, 37(8): 1533-1540.
[38] JULIEN J, HASSAN A, MARKUS B, et al. Facile synjournal of 1-butylamino-and 1,4-bis(butylamino)-2-alkyl-9,10-anthraquinone dyes for improved supercritical carbon dioxide dyeing[J]. Dyes and Pigments, 2020, 173:107991.
doi: 10.1016/j.dyepig.2019.107991
[39] RAI S K, GUNNAM A, MANNAVA M K C, et al. Improving the dissolution rate of the anticancer drug dabrafenib[J]. Crystal Growth & Design, 2020, 20(2): 1035-1046.
doi: 10.1021/acs.cgd.9b01365
[1] 王成龙, 李立新, 吴绍明, 柴丽琴, 周岚. 染色促进剂对聚丁二酸丁二醇酯纤维分散染料染色动力学和热力学的影响[J]. 纺织学报, 2022, 43(01): 147-152.
[2] 潘忆乐, 钱丽颖, 徐纪刚, 何北海, 李军荣. Lyocell纤维纺丝浆粕溶解性的影响因素分析[J]. 纺织学报, 2021, 42(10): 27-33.
[3] 邱靖斯, 刘越. 分散染料的细化分散及其对粒径影响研究进展[J]. 纺织学报, 2021, 42(08): 194-201.
[4] 徐保律, 吴伟, 钟毅, 徐红, 毛志平. 有机溶剂对液体活性染料分散和水解稳定性影响的模拟研究[J]. 纺织学报, 2021, 42(02): 113-121.
[5] 王纯怡, 吴伟, 王健, 徐红, 毛志平. C.I.分散棕19在超临界CO2及水中溶解性的分子动力学模拟[J]. 纺织学报, 2020, 41(09): 95-101.
[6] 吴伟, 陈小文, 钟毅, 徐红, 毛志平. 硫酸钠在低带液轧-焙-蒸活性染料染色中的作用[J]. 纺织学报, 2020, 41(05): 85-93.
[7] 王小艳, 杜金梅, 彭铃淇, 荆丽丽, 许长海. 涤纶针织物碱减量和染色一浴一步法工艺[J]. 纺织学报, 2020, 41(01): 80-87.
[8] 刘越, 莫林祥, 陈丰. 拼混型黑色分散染料的配伍性及其染色性能[J]. 纺织学报, 2019, 40(12): 63-67.
[9] 艾丽, 朱亚伟. 黏合剂的合成及其在分散蓝79微水印花中的应用[J]. 纺织学报, 2019, 40(06): 50-57.
[10] 钱璐敏, 张斌. 可溶性止血医用棉纱布的制备及其性能[J]. 纺织学报, 2019, 40(05): 102-106.
[11] 武奇奇, 李敏, 刘怡宁, 王乐军, 张丽平, 付少海. 聚乳酸织物载体染色性能[J]. 纺织学报, 2019, 40(01): 79-83.
[12] 艾丽 曹红梅 朱亚伟 丁志平. 基于液体分散染料的微量印花技术[J]. 纺织学报, 2018, 39(09): 77-83.
[13] 梁静 钟毅 毛志平 徐红 张琳萍 隋晓锋. 晶型对分散染料染色性能的影响[J]. 纺织学报, 2018, 39(07): 69-73.
[14] 叶思佳 杜奕铃 张永高 郑今欢. 涤纶起绒织物着色烂花印花中分散染料的耐碱性[J]. 纺织学报, 2018, 39(01): 98-103.
[15] 王晓春 闫金龙 张丽平 赵国樑 张健飞. 超高分子质量聚乙烯纤维分散染料染色性能[J]. 纺织学报, 2017, 38(11): 84-90.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 曹建达;顾小军;殷联甫. 用BP神经网络预测棉织物的手感[J]. 纺织学报, 2003, 24(06): 35 -36 .
[2] 【作者单位】:中国纺织工程学会秘书处【分类号】:+【DOI】:cnki:ISSN:0-.0.00-0-0【正文快照】:  香港桑麻基金会设立的“桑麻纺织科技奖” 0 0 年提名推荐工作;在纺织方面院士;专家和有关单位的大力支持下;收到了 个单位 (人 )推荐的 位候选人的. 2003年桑麻纺织科技奖获奖名单[J]. 纺织学报, 2003, 24(06): 107 .
[3] 【分类号】:Z【DOI】:cnki:ISSN:0-.0.00-0-0【正文快照】:  一;纺 纱模糊控制纺纱张力的研究周光茜等 ( - )………………原棉含杂与除杂效果评价方法的研究于永玲 ( - )……网络长丝纱免浆免捻功能的结构表征方法李栋高等 ( - )……………. 2003年纺织学报第二十四卷总目次[J]. 纺织学报, 2003, 24(06): 109 -620 .
[4] 邓炳耀;晏雄. 热压对芳纶非织造布机械性能的影响[J]. 纺织学报, 2004, 25(02): 103 -104 .
[5] 张治国;尹红;陈志荣. 纤维前处理用精练助剂研究进展[J]. 纺织学报, 2004, 25(02): 105 -107 .
[6] 秦元春. 纺织工业发展方向初探[J]. 纺织学报, 2004, 25(02): 108 -110 .
[7] 高伟江;魏文斌. 纺织业发展的战略取向——从比较优势到竞争优势[J]. 纺织学报, 2004, 25(02): 111 -113 .
[8] 潘旭伟;顾新建;韩永生;程耀东. 面向协同的服装供应链快速反应机制研究[J]. 纺织学报, 2006, 27(1): 54 -57 .
[9] 黄小华;沈鼎权. 菠萝叶纤维脱胶工艺及染色性能[J]. 纺织学报, 2006, 27(1): 75 -77 .
[10] 王菊萍;殷佳敏;彭兆清;张峰. 活性染料染色织物超声波酶洗工艺[J]. 纺织学报, 2006, 27(1): 93 -95 .