纺织学报 ›› 2022, Vol. 43 ›› Issue (11): 195-202.doi: 10.13475/j.fzxb.20210905108

• 综合述评 • 上一篇    下一篇

单向导湿纺织品及其应用的研究进展

王洪杰1,2(), 胡忠文1, 王赫1,3, 凤权1, 林童4   

  1. 1.安徽工程大学 纺织服装学院, 安徽 芜湖 241000
    2.安徽工程大学 安徽省纺织结构复合材料国际联合研究中心, 安徽 芜湖 241000
    3.安徽工程大学 安徽省纺织工程技术研究中心, 安徽 芜湖 241000
    4.迪肯大学 前沿材料研究所, 吉朗 VIC 3216
  • 收稿日期:2021-09-13 修回日期:2022-02-07 出版日期:2022-11-15 发布日期:2022-12-26
  • 作者简介:王洪杰(1986—),女,讲师,博士。主要研究方向为功能纺织品的加工与设计。E-mail:wanghongjie@ahpu.edu.cn
  • 基金资助:
    安徽省纺织结构复合材料国际联合研究中心开放基金项目(2021ACTC08);安徽省高等学校纺织面料重点实验室开放基金项目(2021AETKL13);安徽工程大学校级科研项目(Xjky2022065);安徽工程大学校级科研项目(Xjky2022062);安徽工程大学引进人才科研启动基金项目(2020YQQ023);安徽工程大学引进人才科研启动基金项目(2020YQQ024)

Research progress in one-way water transport textiles and their applications

WANG Hongjie1,2(), HU Zhongwen1, WANG He1,3, FENG Quan1, LIN Tong4   

  1. 1. School of Textile and Garment, Anhui Polytechnic University, Wuhu, Anhui 241000, China
    2. Anhui Province International Cooperation Research Center of Textile Structure Composite Materials, Anhui Polytechnic University, Wuhu, Anhui 241000, China
    3. Anhui Engineering and Technology Research Center of Textile, Anhui Polytechnic University, Wuhu, Anhui 241000, China
    4. Institute for Frontier Materials, Deakin University, Geelong, VIC 3216, Australia
  • Received:2021-09-13 Revised:2022-02-07 Published:2022-11-15 Online:2022-12-26

摘要:

为进一步推动单向导湿技术在纺织领域的应用并拓宽单向导湿纺织品的应用领域,对近几年单向导湿纺织品的研究和发展现状及应用进行综述。从表面能梯度角度首先介绍了单向导湿纺织品的设计原理、常用制备方法、发展过程以及最新研究进展;然后分析了不同制备方法的优缺点;并对其应用领域进行分类与性能探讨,包括服用、雾水收集与油水分离以及传感器、空气过滤等领域;阐述了单向导湿性能在各个应用领域所起到的作用,讨论了目前单向导湿纺织品的发展潜力和面临的问题;最后针对当前单向导湿纺织品在制备方面的局限性,提出了可能的解决方案,展望其未来发展方向,以期为单向导湿纺织品的广泛应用提供理论和技术参考。

关键词: 单向导湿, 织物, 纳米纤维膜, 润湿性, 表面能梯度

Abstract:

In order to further promote the one-way water transport technique with textiles and to expand its applications, a detailed overview on research, development, and applications of one-way water transport textiles is presented. This paper summarized the research progress in the one-way water transport textiles in recent years. The designed principles and the common preparation methods based on the surface energy gradient, development process, and the latest research progress were systematically introduced and discussed, and then the advantages and disadvantages of different preparation methods were reviewed and analyzed. The application fields were classified and discussed, including clothing, fog collection, oil-water separation, sensors and air filtration. The roles of one-way water transport textiles played in different applications were explained. Future developments and problems of the one-way water transport textiles were highlighted. Possible solutions were put forward aiming at the limitations of the preparation of one-way water transport textiles, and future development directions were discussed for theoretical and technical references to expand the applications of one-way water transport textiles.

Key words: one-way water transport, fabric, nanofiber membrane, wettability, surface energy gradient

中图分类号: 

  • TB34

图1

水滴铺展示意图"

[1] PARKER A R, LAWRENCE C R. Water capture by a desert beetle[J]. Nature, 2001, 414(6859): 33-33.
doi: 10.1038/35102108
[2] ZHENG Y M, GAO X F, JIANG L. Directional adhesion of superhydrophobic butterfly wings[J]. Soft Matter, 2007, 2:178-182.
[3] JIE J, HAO B, ZHENG Y, et al. A multi-structural and multi-functional integrated fog collection system in cactus[J]. Nature Communications, 2012, 3:1-6.
[4] CHEN H W, ZHANG P F, ZHANG L W, et al. Continuous directional water transport on the peristome surface of Nepenthes alata[J]. Nature, 2016, 532(5): 85-89.
doi: 10.1038/nature17189
[5] GROOT B L, GRUBMULCER H. Water permeation across biological membranes: mechanism and dynamics of aquaporin-1 and GlpF[J]. Science, 2001, 294(5550): 2353-2357.
doi: 10.1126/science.1066115 pmid: 11743202
[6] 刘杰, 王府梅. 单向导湿机织物结构设计[J]. 纺织学报, 2018, 39(3): 50-55.
LIU Jie, WANG Fumei. Woven fabric structure design with unidirectional water transport property[J]. Journal of Textile Research, 2018, 39(3): 50-55.
[7] 李振, 石凌飞, 鄢友娟, 等. 新型单向导湿警用体能训练服面料的开发[J]. 纺织导报, 2021, (9): 66-68.
LI Zhen, SHI Lingfei, YAN Youjuan, et al. Development of new unidirectional moisture-management fabric for police physical training clothes[J] China Textile Leader, 2021,(9): 66-68.
[8] 罗玫因, 蔡再生. 二重组织混合特殊浸润性织物用于单向导湿的研究[J]. 产业用纺织品, 2020, 38(12): 9-15.
LUO Meiyin, CAI Zaisheng. Study on the application of mixed special wettability fabrics based on backed weave in single-side moisture transportation[J]. Technical Textiles, 2020, 38(12): 9-15.
[9] 陶凤仪, 乔明伟, 王姗姗, 等. 单向导湿机织物的设计及其性能研究[J]. 丝绸, 2021, 58(7): 110-116.
TAO Fengyi, QIAO Mingwei, WANG Shanshan, et al. Study on design and performance of unidirectional woven fabric with moisture conduction function[J]. Journal of Silk, 2021, 58(7): 110-116.
[10] CAO M L, LI K, DONG Z C, et al. Superhydrophobic ″pump″: continuous and spontaneous antigravity water delivery[J]. Advanced Functional Materials, 2015, 25(26): 4114-4119.
doi: 10.1002/adfm.201501320
[11] WANG H X, DING J, DAI L M, et al. Directional water-transfer through fabrics induced by asymmetric wettability[J]. Journal of Materials Chemistry, 2010, 20(37): 7938-7940.
doi: 10.1039/c0jm02364g
[12] KONG Y Y, LIU Y Y, XIN J H. Fabrics with self-adaptive wettability controlled by ″light-and-dark″[J]. Journal of Materials Chemistry, 2011, 21(44): 17978-17987.
doi: 10.1039/c1jm12516h
[13] LI H Q, HAO X B, GONG J X, et al. Daylight-triggered directional water transport fabric prepared with TiO2 sol-gel method?[J]. Journal of Fiber Bioengineering and Informatics, 2015, 8(4): 733-740.
doi: 10.3993/jfbim00182
[14] ZHU R F, LIU M M, HOU Y Y, et al. Biomimetic fabrication of Janus fabric with asymmetric wettability for water purification and hydrophobic/hydrophilic patterned surfaces for fog harvesting[J]. ACS Applied Materials & Interfaces, 2020, 12(44): 50113-50125.
[15] ZHOU H, WANG H X, NIU H T, et al. Superphobicity/philicity Janus fabrics with switchable, spontaneous, directional transport ability to water and oil fluids[J]. Scientific Reports, 2013, 3(10): 2964.
doi: 10.1038/srep02964
[16] ZHANG C, HE S, WANG D F, et al. Facile fabricate a bioinspired Janus membrane with heterogeneous wettability for unidirectional water transfer and controllable oil-water separation[J]. Journal of Materials Science, 2018, 53(20): 14398-14411.
doi: 10.1007/s10853-018-2659-8
[17] TIAN X L, JIN H, SAINIO J, et al. Droplet and fluid gating by biomimetic Janus membranes[J]. Advanced Functional Materials, 2014, 24(38): 6023-6028.
doi: 10.1002/adfm.201400714
[18] SUN F X, CHEN Z Q, ZHU L C, et al. Directional trans-planar and different in-plane water transfer properties of composite structured bifacial fabrics modified by a facile three-step plasma treatment[J]. Coatings, 2017, 7(8): 132.
doi: 10.3390/coatings7080132
[19] 蒋佩林, 黄晨, 李晶, 等. 壳聚糖/PBT单向导湿非织造材料的制备及性能[J]. 东华大学学报(自然科学版), 2019, 45(3): 339-344.
JIANG Peilin, HUANG Chen, LI Jing, et al. Preparation and properties of chitosan/PBT undirectional water-transfer nonwoven materials[J]. Journal of Donghua University (Natural Science), 2019, 45(3): 339-344.
[20] CLOUPEAU M, PRUNET-FOCH B. Electrostatic spraying of liquids: main functioning modes[J]. Journal of Electrostatics, 1990, 25(2): 165-184.
doi: 10.1016/0304-3886(90)90025-Q
[21] WANG R, LIU H. Surface deposition of chitosan on wool substrate by electrospraying[J]. Advanced Materials Research, 2011, 331: 165-170.
doi: 10.4028/www.scientific.net/AMR.331.165
[22] CARSTOIU J. Fundamental equations of electrom agnetodynamics of fluids: various consequences[J]. Proceedings of the National Academy of Sciences of the United States of America, 1968, 59(2): 326.
pmid: 16591600
[23] CLOUPEAU M, PRUNET-FOCH B. Electrostatic spraying of liquids in cone-jet mode[J]. Journal of Electrostatics, 1989, 22(2): 135-159.
doi: 10.1016/0304-3886(89)90081-8
[24] XU Y H, ZHU Y J, HAN F D, et al. 3D Si/C fiber paper electrodes fabricated using a combined electrospray/electrospinning technique for Li-ion batteries[J]. Advanced Energy Materials, 2015. DOI: 10.1002/AENM.201400753
doi: 10.1002/AENM.201400753
[25] 何志聪, 朱丽慧, 黄清伟. CNT/CNP-TiN涂层的高压静电喷涂技术制备及光吸收性能研究[J]. 半导体光电, 2021, 42(5): 698-703.
HE Zhicong, ZHU Lihui, HUANG Qingwei. Fabrication and optical absorption properties of CNT/CNP-TiN coating prepared by high voltage electrostatic spraying technology[J]. Semiconductor Optoelectronics, 2021, 42(5): 698-703.
[26] CHAPARRO A, FERREIRA-APARICIO P, FOLGADO M, et al. Catalyst layers for proton exchange membrane fuel cells prepared by electrospray deposition on Nafion membrane[J]. Journal of Power Sources, 2011, 196(9): 4200-4208.
doi: 10.1016/j.jpowsour.2010.09.096
[27] CHO Y S, JEONG S, NAM S. Stable dispersion of ITO nanoparticles for self-organization by electrospinning and electrospray[J]. Journal of Dispersion Science and Technology, 2019, 41(13): 1963-1975.
doi: 10.1080/01932691.2019.1645023
[28] LI W L, WANG H P, LI Z X. Hierarchical structure microspheres of PCL block copolymers via electrospraying as coatings for fabric with mechanical durability and self-cleaning ability[J]. Polymers for Advanced Technologies, 2019, 30(9):2321-2330.
doi: 10.1002/pat.4660
[29] 刘承志. 基于粉末涂料制备耐磨超疏水涂层的研究[D]. 南京: 东南大学, 2019: 16-17.
LIU Chengzhi. Research on the preparation of wear-resistant superhydrophobic coatings based on powder paint[D]. Nanjing: Southeast University, 2019: 16-17.
[30] ZENG C, WANG H X, ZHOU H, et al. Directional water transport fabrics with durable ultra-high one-way transport capacity[J]. Advanced Materials Interfaces, 2016. DOI: 10.1002/admi.201600036.
doi: 10.1002/admi.201600036
[31] ZHOU H, WANG H X, NIU H T, et al. One-way water-transport cotton fabrics with enhanced cooling effect[J]. Advanced Materials Interfaces, 2016. DOI: 10.1002/admi.201600283.
doi: 10.1002/admi.201600283
[32] WANG H J, WANG W Y, WANG H, et al. Pore size effect on one-way water-transport cotton fabrics[J]. Applied Surface Science, 2018, 455: 924-930.
doi: 10.1016/j.apsusc.2018.06.007
[33] WANG H J, WANG W Y, WANG H, et al. One-way water transport fabrics with hydrophobic rough surface formed in one-step electrospray[J]. Materials Letters, 2018, 215: 110-113.
doi: 10.1016/j.matlet.2017.12.066
[34] 齐国瑞, 柯勤飞, 李祖安, 等. 纯棉水刺非织造材料的单向导湿无氟整理[J]. 纺织学报, 2019, 40(7): 119-127.
QI Guorui, KE Qinfei, LI Zuan, et al. Single-guide water non-fluorinated finishing of cotton spunlace non-woven materials[J]. Journal of Textile Research, 2019, 40(7): 119-127.
[35] 贾常林. 单向导湿纯棉织物的制备及其吸湿凉爽性能研究[D]. 上海: 东华大学, 2019: 19.
JIA Changlin. Preparation of unidirectional water-transfer cotton fabric and its moisture absorption and coolness property[D]. Shanghai: Donghua University, 2019: 19.
[36] 范追追, 翟世雄, 蔡再生. 高性能单向导湿织物的制备研究[J]. 针织工业, 2021(1): 34-38.
FAN Zhuizhui, ZHAI Shixiong, CAI Zaisheng. Preparation of high-performance one-way moisture-transfer fabrics[J]. Knitting Industries, 2021(1): 34-38.
[37] WU J, WANG N, WANG L, et al. Unidirectional water-penetration composite fibrous film via electrospinning[J]. Soft Matter, 2012, 8(22): 5996-5999.
doi: 10.1039/c2sm25514f
[38] WU J, ZHOU H, WANG H X, et al. Novel water harvesting fibrous membranes with directional water transport capability[J]. Advanced Materials Interfaces, 2019. DOI: 10.1002/admj.201801529.
doi: 10.1002/admj.201801529
[39] 曹万宏, 蒙国慧, 贾耀芳. 一种单向导湿全棉复合水刺卫生面层材料的开发[J]. 产业用纺织品, 2020, 38(11): 11-15.
CAO Wanhong, MENG Guohui, JIA Yaofang. Development of a single-side moisture-transferring cotton spunlaced sanitary fabric[J]. Technical Textiles, 2020, 38(11): 11-15.
[40] ZHANG Y, LI T T, REN H T, et al. Tuning the gradient structure of highly breathable, permeable, directional water transport in bi-layered Janus fibrous membranes using electrospinning[J]. RSC Advances, 2020, 10(6): 3529-3538.
doi: 10.1039/c9ra06022g pmid: 35497713
[41] YAN W A, MIAO D Y, BABAR A A, et al. Multi-scaled interconnected inter-and intra-fiber porous janus membranes for enhanced directional moisture trans-port[J]. Journal of Colloid and Interface Science, 2020, 565: 426-435.
doi: 10.1016/j.jcis.2020.01.063
[42] 陈鑫. 聚丙烯腈纳米纤维膜制备及功能化应用研究[D]. 合肥: 中国科学技术大学, 2020: 72.
CHEN Xin. Study on preparation and functionalization of polyacrylonitrile nanofibrous membrane[D]. Hefei: Uinversity of Science and Technology of China, 2020: 72.
[43] 齐炜东, 徐孙杰, 许振良, 等. 超疏水PDMS/PVDF纳米纤维膜制备及其苯酚分离性能[J]. 膜科学与技术, 2021, 41(1): 10-15.
QI Weidong, XU Sunjie, XU Zhenliang, et al. Preparation of superhydrophobic PDMS/PVDF nanofiber membrane and its phenol separation performance[J]. Membrane Science and Technology, 2021, 41(1): 10-15.
[44] 曹田田. PAN/PU复合电纺纤维的宏量制备及其防水透湿应用研究[D]. 上海: 东华大学, 2021: 21.
CAO Tiantian. Study on the macro-preparation of PAN/PU composite electrospun fiber and its application as waterproof permeable film[D]. Shanghai: Donghua University, 2021: 21.
[45] XU J H, XIN B J, CHEN Z M, et al. Preparation and characterization of multilayered superfine fibrous mat with the function of directional water transport[J]. RSC Advances, 2019, 9(29): 16754-16766.
doi: 10.1039/C9RA00996E
[46] XU J H, XIN B J, DU X X, et al. Flexible, portable and heatable non-woven fabric with directional moisture transport functions and ultra-fast evaporation[J]. RSC Advances, 2020, 10(46): 27512-27522.
doi: 10.1039/d0ra03867a pmid: 35516954
[47] WANG X F, HUANG Z, MIAO D Y, et al. Biomimetic fibrous murray membranes with ultrafast water transport and evaporation for smart moisture-wicking fabrics[J]. ACS Nano, 2018, 13(2): 1060-1070.
[48] 欧康康, 侯怡君, 吴俊妍, 等. 单向导湿纳米纤维光热膜的制备及废水处理[J]. 印染, 2021, 47(9): 15-18.
OU Kangkang, HOU Yijun, WU Junyan, et al. Preparation of one-way transport nano fiber photothermal membrane and its wastewater treatment[J]. China Dyeing & Finishing, 2021, 47(9): 15-18.
[49] XU J H, XIN B J, WANG C, et al. Tailoring double-layered fibrous mat of modified polypropylene/cotton fabric for the function of directional moisture trans-port[J]. Journal of Applied Polymer Science, 2020, 137(47): 49530.
doi: 10.1002/app.49530
[50] HE X C, YANG S J, PEI Q B, et al. Integrated smart janus textile bands for self-pumping sweat sampling and analysis[J]. ACS Sensors, 2020, 5(6): 1548-1554.
doi: 10.1021/acssensors.0c00563 pmid: 32466645
[51] HUANG G, XU H D, JIN Y K, et al. Electrospun Janus fabrics with directional water transport property for efficient water collection[J]. Materials Letters, 2021. DOI: 10.1016/j.matlet.2021.1294.24.
doi: 10.1016/j.matlet.2021.1294.24
[52] HUANG G, LIANG Y C, WANG J H, et al. Effect of asymmetric wettability on directional transport of water through Janus fabrics prepared by an electrospinning technique[J]. Materials Letters, 2019, 246: 76-79.
doi: 10.1016/j.matlet.2019.03.011
[53] 梁迎春. Janus织物的制备及单向导湿性能研究[D]. 江门: 五邑大学, 2019:17.
LIANG Yingchun. Preparation of Janus fabric and study on directional water transport performance[D]. Jiangmen: Wuyi University, 2019:17.
[54] BABAR A A, ZHAO X L, WANG X F, et al. One-step fabrication of multi-scaled, inter-connected hierarchical fibrous membranes for directional moisture transport[J]. Journal of Colloid and Interface Science, 2020, 577: 207-216.
doi: S0021-9797(20)30664-0 pmid: 32480107
[55] WANG H X, ZHOU H, YANG W D, et al. Selective, spontaneous one-way oil-transport fabrics and their novel use for gauging liquid surface tension[J]. ACS Applied Materials & Interfaces, 2015, 7(41): 22874-22880.
[56] WANG H X, NIU H T, ZHOU H, et al. Multifunctional directional water transport fabrics with moisture sensing capability[J]. ACS Applied Materials & Interfaces, 2019, 11(25): 22878-22884.
[57] XU W S, CHEN Y, LIU Y. Directional water transfer Janus nanofibrous porous membranes for particulate matter filtration and volatile organic compound adsorption[J]. ACS Applied Materials & Interfaces, 2021, 13(2): 3109-3118.
[58] 杨玉艳. 具有单向导湿和热传导功能的多层结构空气过滤纤维膜的制备与性能研究[D]. 青岛: 青岛大学, 2020:28.
YANG Yuyan. Preparation and performance study of multilayer structured fibrous membrane for air filtration with unidirectional moisture transportability and heat conduction function[D]. Qingdao: Qingdao University, 2020:28.
[1] 张楚丹, 王锐, 王文庆, 刘燕燕, 陈睿. 阳离子改性阻燃涤纶织物的制备及其性能[J]. 纺织学报, 2022, 43(12): 109-117.
[2] 梅敏, 钱建华, 周榆凯, 杨晶晶. 纳米SiO2/含氟硅防水透湿整理剂的制备及其应用[J]. 纺织学报, 2022, 43(12): 118-124.
[3] 陈钰珊, 蒋高明, 李炳贤. 纬编绕经织物设计与三维仿真[J]. 纺织学报, 2022, 43(12): 62-68.
[4] 方寅春, 陈吕鑫, 李俊伟. 阻燃超疏水涤/棉混纺织物的制备及其性能[J]. 纺织学报, 2022, 43(11): 113-118.
[5] 杨红英, 齐梦园, 杨志晖, 杨艳丽, 张靖晶, 谢宛姿. 基于心理物理学实验的非荧光织物白度公式评价[J]. 纺织学报, 2022, 43(11): 119-126.
[6] 乔曦冉, 房宽峻, 刘秀明, 巩继贤, 张帅, 张敏. 羟乙基甲基纤维素改性对棉和锦纶织物表面性质的差异性影响[J]. 纺织学报, 2022, 43(11): 127-132.
[7] 曹聪聪, 汤龙世, 刘元军, 赵晓明. 无机抗菌织物的研究进展[J]. 纺织学报, 2022, 43(11): 203-211.
[8] 郑兆伦, 鲁玉军. 基于奇异值分解的双算法织物缺陷检测[J]. 纺织学报, 2022, 43(11): 59-67.
[9] 苏子越, 单颖法, 巫莹柱, 秦介垚, 彭美婷, 王晓梅, 黄美林. 碳纤维织物基形状记忆复合材料的制备及其性能[J]. 纺织学报, 2022, 43(11): 75-80.
[10] 张志颖, 王亦秋, 眭建华. 超高分子量聚乙烯纤维增强中空蜂窝模压复合材料性能研究[J]. 纺织学报, 2022, 43(11): 81-87.
[11] 冯艳, 李亮, 刘淑萍, 李淑静, 刘让同. 氮碳量子点/二氧化钛复合整理粘胶织物光催化协同构效[J]. 纺织学报, 2022, 43(10): 112-118.
[12] 张典典, 于梦楠, 李敏, 刘明明, 付少海. 基于聚合物微球接枝硅油的超滑棉织物制备及其防污性能[J]. 纺织学报, 2022, 43(10): 119-125.
[13] 俞杨销, 李枫, 王煜煜, 王善龙, 王建南, 许建梅. 聚吡咯/丝素导电纳米纤维膜的制备及其性能[J]. 纺织学报, 2022, 43(10): 16-23.
[14] 刘成霞, 张亚琦. 织物多方向弯曲性能测试新方法[J]. 纺织学报, 2022, 43(10): 53-57.
[15] 李沐芳, 陈佳鑫, 曾凡佳, 王栋. 间隔织物基光热-热电复合材料的制备及其性能[J]. 纺织学报, 2022, 43(10): 65-70.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 赵良臣;闻涛. 旋转组织设计的数学原理[J]. 纺织学报, 2003, 24(06): 33 -34 .
[2] 曹建达;顾小军;殷联甫. 用BP神经网络预测棉织物的手感[J]. 纺织学报, 2003, 24(06): 35 -36 .
[3] 【作者单位】:中国纺织工程学会秘书处【分类号】:+【DOI】:cnki:ISSN:0-.0.00-0-0【正文快照】:  香港桑麻基金会设立的“桑麻纺织科技奖” 0 0 年提名推荐工作;在纺织方面院士;专家和有关单位的大力支持下;收到了 个单位 (人 )推荐的 位候选人的. 2003年桑麻纺织科技奖获奖名单[J]. 纺织学报, 2003, 24(06): 107 .
[4] 【分类号】:Z【DOI】:cnki:ISSN:0-.0.00-0-0【正文快照】:  一;纺 纱模糊控制纺纱张力的研究周光茜等 ( - )………………原棉含杂与除杂效果评价方法的研究于永玲 ( - )……网络长丝纱免浆免捻功能的结构表征方法李栋高等 ( - )……………. 2003年纺织学报第二十四卷总目次[J]. 纺织学报, 2003, 24(06): 109 -620 .
[5] 朱敏;周翔. 准分子激光对聚合物材料的表面改性处理[J]. 纺织学报, 2004, 25(01): 1 -9 .
[6] 黄立新. Optim纤维及产品的开发与应用[J]. 纺织学报, 2004, 25(02): 101 -102 .
[7] 邓炳耀;晏雄. 热压对芳纶非织造布机械性能的影响[J]. 纺织学报, 2004, 25(02): 103 -104 .
[8] 张治国;尹红;陈志荣. 纤维前处理用精练助剂研究进展[J]. 纺织学报, 2004, 25(02): 105 -107 .
[9] 秦元春. 纺织工业发展方向初探[J]. 纺织学报, 2004, 25(02): 108 -110 .
[10] 高伟江;魏文斌. 纺织业发展的战略取向——从比较优势到竞争优势[J]. 纺织学报, 2004, 25(02): 111 -113 .