纺织学报 ›› 2021, Vol. 42 ›› Issue (12): 174-179.doi: 10.13475/j.fzxb.20210905206
WANG Songli1, WANG Meilin1, ZHOU Xiang1(), LIU Zunfeng2,3
摘要:
蜘蛛丝因其优异的力学性能和良好的生物相容性,一直吸引着科学家的研究兴趣。但蜘蛛在大规模繁殖中互相残杀的特性导致其无法像蚕丝一样实现商业化生产,因此,研发人造蜘蛛丝及仿蜘蛛丝纤维成为解决上述问题的有效方法。为更好地理解蜘蛛丝强韧的本质,综述了天然蜘蛛丝的结构,包括一级结构、β-折叠晶体网络(纳米纤维)结构及其形成过程。介绍了目前人造蜘蛛丝与仿蜘蛛丝纤维的制备进展,包括使用的多肽、非重组蜘蛛纤维蛋白、高分子材料和碳纳米管材料等,为下一步研究与规模化制备人造蜘蛛丝及仿蜘蛛丝纤维提供参考。
中图分类号:
[1] |
PORTER D, GUAN J, VOLLRATH F. Spider silk: super material or thin fibre?[J]. Advanced Materials, 2013, 25(9):1275-1279.
doi: 10.1002/adma.v25.9 |
[2] |
HEIM M, KEERL D, SCHEIBEL T. Spider silk: from soluble protein to extraordinary fiber[J]. Angewandte Chemie International Edition, 2009, 48(20):3584-3596.
doi: 10.1002/anie.v48:20 |
[3] |
KLUGE J A, RABOTYAGOVA O, LEISK G G, et al. Spider silks and their applications[J]. Trends in Biotechnol, 2008, 26(5):244-251.
doi: 10.1016/j.tibtech.2008.02.006 |
[4] |
LEWIS R V. Spider silk: ancient ideas for new biomaterials[J]. Chemical Reviews, 2006, 106(9):3762-3774.
doi: 10.1021/cr010194g |
[5] |
GU Y, YU S, MOU J, et al. Research progress on the collaborative drag reduction effect of polymers and surfactants[J]. Materials, 2020, 13(2):444.
doi: 10.3390/ma13020444 |
[6] |
VOLLRATH F, KNIGHT D. Liquid crystalline spinning of spider silk[J]. Nature, 2001, 410(6828):541-548.
doi: 10.1038/35069000 |
[7] |
HE Q, YU M, LI Y, et al. Adhesion characteristics of a novel synthetic polydimethylsiloxane for bionic adhesive pads[J]. Journal of Bionic Engineering, 2014, 11(3):371-377.
doi: 10.1016/S1672-6529(14)60050-0 |
[8] |
VOLLRATH F, PORTER D. Spider silk as archetypal protein elastomer[J]. Soft Matter, 2006, 2(5):377-385.
doi: 10.1039/b600098n |
[9] | 张鸿昊, 林乃波, 刘向阳. 蚕丝和蜘蛛丝多级结构对力学性能的影响[J]. 功能高分子学报, 2018, 31(6):501-512. |
ZHANG Honghao, LIN Naibo, LIU Xiangyang. Effect of multi-level structure of silk and spider silk on mechanical properties[J]. Journal of Functional Polymers, 2018, 31(6):501-512. | |
[10] | AGNARSSON I, KUNTNER M, BLACKLEDGE T A. Bioprospecting finds the toughest biological material: extraordinary silk from a giant riverine orb spider[J]. PLoS One, 2010, 5(9):11234. |
[11] | 赵爱春, 夏庆友, 向仲怀, 等. 超级纤维蜘蛛丝的研究动向[J]. 蚕学通讯, 2007, 27(2):28-34. |
ZHAO Aichun, XIA Qingyou, XIANG Zhonghai, et al. Research trend in superfiber spider silks[J]. Newsletter of Sericultural Science, 2007, 27(2):28-34. | |
[12] |
EISOLDT L, SMITH A, SCHEIBEL T. Decoding the secrets of spider silk[J]. Materials Today, 2011, 14(3):80-86.
doi: 10.1016/S1369-7021(11)70057-8 |
[13] | AYOUB N A, GARB J E, TINGHITELLA R M, et al. Blueprint for a high-performance biomaterial: full-length spider dragline silk genes[J]. PLoS One, 2007, 2(6):514. |
[14] |
SMITH D M, SMITH A S, LEWIS R V, et al. Analysis of the conserved N-terminal domains in major ampullate spider silk proteins[J]. Biomacromolecules, 2005, 6:3152-3159.
doi: 10.1021/bm050472b |
[15] |
CHALLIS R J, GOODACRE S L, HEWITT G M. Evolution of spider silks: conservation and diversification of the C-terminus[J]. Insect Molecular Biology, 2006, 15(1):45-56.
doi: 10.1111/imb.2006.15.issue-1 |
[16] |
SPONNER A, UNGER E, GROSSE F, et al. Differential polymerization of the two main protein components of dragline silk during fibre spinning[J]. Nature Materials, 2005, 4(10):772-775.
doi: 10.1038/nmat1493 |
[17] |
HAYASHI C Y, SHIPLEY N H, LEWIS R V. Hypotheses that correlate the sequence, structure, and mechanical properties of spider silk proteins[J]. International Journal of Biological Macromolecules, 1999, 24(2/3):271-275.
doi: 10.1016/S0141-8130(98)00089-0 |
[18] |
CRAIG H C, PIORKOWSKI D, NAKAGAWA S, et al. Meta-analysis reveals materiomic relationships in major ampullate silk across the spider phylogeny[J]. Journal of the Royal Society Interface, 2020, 17(170):20200471.
doi: 10.1098/rsif.2020.0471 |
[19] |
MALAY A D, SUZUKI T, KATASHIMA T, et al. Spider silk self-assembly via modular liquid-liquid phase separation and nanofibrillation[J]. Science Advances, 2020. DOI: 10.1126/sciadv.abb6030.
doi: 10.1126/sciadv.abb6030 |
[20] | KONO N, NAKAMURA H, MORI M, et al. Multicomponent nature underlies the extraordinary mechanical properties of spider dragline silk[J]. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118(31):2107065118. |
[21] |
LIU R, DENG Q, YANG Z, et al. 'Nano-fishnet' structure making silk fibers tougher[J]. Advanced Functional Materials, 2016, 26(30):5534-5541.
doi: 10.1002/adfm.201600813 |
[22] |
LI S F, MCGHIE A J, TANG S L. New internal structure of spider dragline silk revealed by atomic forcemicroscopy[J]. Biophysical Journal, 1994, 66(4):1209-1212.
doi: 10.1016/S0006-3495(94)80903-8 |
[23] | SPONNER A, VATER W, MONAJEMBASHI S, et al. Composition and hierarchical organisation of a spider silk[J]. PLoS One, 2007, 2(10):998. |
[24] |
YAZAWA K, MALAY A D, MASUNAGA H, et al. Role of skin layers on mechanical properties and supercontraction of spider dragline silk fiber[J]. Macromolecular Bioscience, 2019, 19(3):1800220.
doi: 10.1002/mabi.v19.3 |
[25] |
DINJASKI N, KAPLAN D L. Recombinant protein blends: silk beyond natural design[J]. Current Opinion in Biotechnology, 2016, 39:1-7.
doi: 10.1016/j.copbio.2015.11.002 |
[26] |
ANDERSSON M, JIA Q, ABELLA A, et al. Biomimetic spinning of artificial spider silk from a chimeric minispidroin[J]. Nature Chemical Biology, 2017, 13(3):262-264.
doi: 10.1038/nchembio.2269 |
[27] |
ZHU H, SUN Y, YI T, et al. Tough synthetic spider-silk fibers obtained by titanium dioxide incorporation and formaldehyde cross-linking in a simple wet-spinning process[J]. Biochimie, 2020, 175:77-84.
doi: 10.1016/j.biochi.2020.05.003 |
[28] |
PENG Q, ZHANG Y, LU L, et al. Recombinant spider silk from aqueous solutions via a bio-inspired microfluidic chip[J]. Scientific Reports, 2016, 6:36473-36483.
doi: 10.1038/srep36473 |
[29] |
SCHMUCK B, GRECO G, BARTH A, et al. High-yield production of a super-soluble miniature spidroin for biomimetic high-performance materials[J]. Materials Today, 2021.DOI: 10.1016/j.mattod.2021.07.020.
doi: 10.1016/j.mattod.2021.07.020 |
[30] |
TSUCHIYA K, NUMATA K. Chemical synjournal of multiblock copolypeptides inspired by spider dragline silk proteins[J]. ACS Macro Letters, 2017, 6(2):103-106.
doi: 10.1021/acsmacrolett.7b00006 |
[31] |
GU L, JIANG Y, HU J. Scalable spider-silk-like supertough fibers using a pseudoprotein polymer[J]. Advanced Materials, 2019, 31(48):1904311.
doi: 10.1002/adma.v31.48 |
[32] |
DOU Y, WANG Z P, HE W Q, et al. Artificial spider silk from ion-doped and twisted core-sheath hydrogel fibres[J]. Nature Communications, 2019, 10(1):5293.
doi: 10.1038/s41467-019-13257-4 |
[33] |
CHU C K, JOSEPH A J, LIMJOCO M D, et al. Chemical tuning of fibers drawn from extensible hyaluronic acid networks[J]. Journal of the American Chemical Society, 2020, 142(46):19715-19721.
doi: 10.1021/jacs.0c09691 |
[34] |
ZHAO X, CHEN F, LI Y, et al. Bioinspired ultra-stretchable and anti-freezing conductive hydrogel fibers with ordered and reversible polymer chain alignment[J]. Nature Communications, 2018, 9(1):3579.
doi: 10.1038/s41467-018-05904-z |
[35] |
YU Y, HE Y, MU Z, et al. Biomimetic mineralized organic-inorganic hybrid macrofiber with spider silk-like supertoughness[J]. Advanced Functional Materials, 2019, 30(6):1908556.
doi: 10.1002/adfm.v30.6 |
[36] | KIM H, JANG Y, LEE D Y, et al. Bio-inspired stretchable and contractible tough fiber by the hybridization of GO/MWNT/polyurethane[J]. ACS Applied Materials & Interfaces, 2019, 11(34):31162-31168. |
[37] |
KIM S H, KWON C H, PARK K, et al. Bio-inspired, moisture-powered hybrid carbon nanotube yarn mus-cles[J]. Scientific Reports, 2016, 6:23016.
doi: 10.1038/srep23016 |
[38] |
ZHAO C, ZHANG P, SHI R, et al. Super-tough and strong nanocomposite fibers by flow-induced alignment of carbon nanotubes on grooved hydrogel surfaces[J]. Science China Materials, 2019, 62(9):1332-1340.
doi: 10.1007/s40843-019-9421-y |
[1] | 闵小豹, 潘志娟. 生物质纤维/ 菠萝叶纤维多组分混纺纱线的品质与性能[J]. 纺织学报, 2022, 43(01): 74-79. |
[2] | 宋雪旸, 张岩, 徐成功, 王萍, 阮芳涛. 碳纤维/聚丙烯/聚乳酸增强复合材料的力学性能[J]. 纺织学报, 2021, 42(11): 84-88. |
[3] | 周濛濛, 蒋高明, 高哲, 郑培晓. 纬编衬经衬纬管状织物增强复合材料研究进展[J]. 纺织学报, 2021, 42(07): 184-191. |
[4] | 陆振乾, 杨雅茹, 荀勇. 纤维对水泥基复合材料性能影响研究进展[J]. 纺织学报, 2021, 42(04): 177-183. |
[5] | 左亚君, 蔡赟, 王蕾, 高卫东. 纯棉纱线合股数对织物性能的影响[J]. 纺织学报, 2021, 42(04): 74-79. |
[6] | 黄笛, 李芳, 李刚. 涤纶/蚕丝机织心脏瓣膜的制备及其性能[J]. 纺织学报, 2021, 42(02): 74-79. |
[7] | 孙亚博, 李立军, 马崇启, 吴兆南, 秦愈. 基于ABAQUS的筒状纬编针织物拉伸力学性能模拟[J]. 纺织学报, 2021, 42(02): 107-112. |
[8] | 杨萍, 严飙, 马丕波. 网状结构织物制备与应用研究进展[J]. 纺织学报, 2021, 42(01): 175-180. |
[9] | 陈美玉, 刘玉琳, 胡革明, 孙润军. 涡流纺纱线的包缠加捻对其力学性能的影响[J]. 纺织学报, 2021, 42(01): 59-66. |
[10] | 宋星, 金肖克, 祝成炎, 蔡冯杰, 田伟. 玻璃纤维/光敏树脂复合材料的3D打印及其力学性能[J]. 纺织学报, 2021, 42(01): 73-77. |
[11] | 汪希铭, 程凤, 高晶, 王璐. 交联改性对敷料用壳聚糖/聚氧化乙烯纳米纤维膜性能的影响[J]. 纺织学报, 2020, 41(12): 31-36. |
[12] | 刘淑强, 武捷, 吴改红, 阴晓龙, 李甫, 张曼. 纳米SiO2对玄武岩纤维的表面改性[J]. 纺织学报, 2020, 41(12): 37-41. |
[13] | 庞雅莉, 孟佳意, 李昕, 张群, 陈彦锟. 石墨烯纤维的湿法纺丝制备及其性能[J]. 纺织学报, 2020, 41(09): 1-7. |
[14] | 展晓晴, 李凤艳, 赵健, 李海琼. 超高分子量聚乙烯纤维的热力学稳定性能[J]. 纺织学报, 2020, 41(08): 9-14. |
[15] | 张祝辉, 张典堂, 钱坤, 徐阳, 陆健. 广角机织物的织造工艺及其偏轴拉伸力学性能[J]. 纺织学报, 2020, 41(08): 27-31. |
|