纺织学报 ›› 2021, Vol. 42 ›› Issue (12): 174-179.doi: 10.13475/j.fzxb.20210905206

• 综合述评 • 上一篇    下一篇

人造蜘蛛丝与仿蜘蛛丝纤维的研究进展

王松立1, 王美林1, 周湘1(), 刘遵峰2,3   

  1. 1.中国药科大学 理学院, 江苏 南京 211100
    2.南开大学 化学学院, 天津 300110
    3.辽宁科技大学 化学工程学院, 辽宁 鞍山 114051
  • 收稿日期:2021-09-15 修回日期:2021-10-09 出版日期:2021-12-15 发布日期:2021-12-29
  • 通讯作者: 周湘
  • 作者简介:王松立(1996—),男,硕士生。主要研究方向为仿生医用高分子材料的制备。
  • 基金资助:
    国家自然科学基金项目(51973093);国家自然科学基金项目(U1533122);国家自然科学基金项目(51773094);兴辽英才计划(XLYC1802042)

Research progress of artificial spider silk and imitation spider silk fiber

WANG Songli1, WANG Meilin1, ZHOU Xiang1(), LIU Zunfeng2,3   

  1. 1. School of Science, China Pharmaceutical University, Nanjing, Jiangsu 211100, China
    2. College of Chemistry, Nankai University, Tianjin 300110, China
    3. College of Chemical Engineering, University of Science and Technology Liaoning, Anshan, Liaoning 114051, China
  • Received:2021-09-15 Revised:2021-10-09 Published:2021-12-15 Online:2021-12-29
  • Contact: ZHOU Xiang

摘要:

蜘蛛丝因其优异的力学性能和良好的生物相容性,一直吸引着科学家的研究兴趣。但蜘蛛在大规模繁殖中互相残杀的特性导致其无法像蚕丝一样实现商业化生产,因此,研发人造蜘蛛丝及仿蜘蛛丝纤维成为解决上述问题的有效方法。为更好地理解蜘蛛丝强韧的本质,综述了天然蜘蛛丝的结构,包括一级结构、β-折叠晶体网络(纳米纤维)结构及其形成过程。介绍了目前人造蜘蛛丝与仿蜘蛛丝纤维的制备进展,包括使用的多肽、非重组蜘蛛纤维蛋白、高分子材料和碳纳米管材料等,为下一步研究与规模化制备人造蜘蛛丝及仿蜘蛛丝纤维提供参考。

关键词: 蜘蛛丝, 人造蜘蛛丝, 仿蜘蛛丝纤维, 力学性能, 蛛丝结构

Abstract:

Spider silks have been received much attention from researchers due to their excellent mechanical properties and good biocompatibility. Different from the silk, the spider silk is difficult to be commercially produced in a large scale, as the spiders kill each other in large-scale breeding. Therefore, the development of artificial spider silk and imitation spider silk fibers have become an effective method to solve the above problems. In order to better understand the nature of the strength and toughness of spider silk, the structure of nature spider silk was reviewed, including the primary and β-crystal network (nanofibril) structure and formation process. The progress in the preparation of artificial spider silk and imitation spider silk fibers, including polypeptides, recombinant spider fibrous protein, polymer materials and carbon nanotube yarns and other materials was introduced, which provided reference for further reaearch and large-scale preparation of artificial spider and imitation spider fiber.

Key words: spider silk, artificial spider silk, imitation spider silk fiber, mechanical property, structure of spider silk

中图分类号: 

  • TS102.3

图1

蜘蛛丝的分类"

图2

蜘蛛丝纳米渔网结构及β-晶体的形成过程 注:图中Lc、Lb和La分别表示晶体的长、宽和高。"

图3

水凝胶纤维的制备流程"

图4

PVA/Alg/HAP复合纤维的制备过程及微观网络结构示意图"

[1] PORTER D, GUAN J, VOLLRATH F. Spider silk: super material or thin fibre?[J]. Advanced Materials, 2013, 25(9):1275-1279.
doi: 10.1002/adma.v25.9
[2] HEIM M, KEERL D, SCHEIBEL T. Spider silk: from soluble protein to extraordinary fiber[J]. Angewandte Chemie International Edition, 2009, 48(20):3584-3596.
doi: 10.1002/anie.v48:20
[3] KLUGE J A, RABOTYAGOVA O, LEISK G G, et al. Spider silks and their applications[J]. Trends in Biotechnol, 2008, 26(5):244-251.
doi: 10.1016/j.tibtech.2008.02.006
[4] LEWIS R V. Spider silk: ancient ideas for new biomaterials[J]. Chemical Reviews, 2006, 106(9):3762-3774.
doi: 10.1021/cr010194g
[5] GU Y, YU S, MOU J, et al. Research progress on the collaborative drag reduction effect of polymers and surfactants[J]. Materials, 2020, 13(2):444.
doi: 10.3390/ma13020444
[6] VOLLRATH F, KNIGHT D. Liquid crystalline spinning of spider silk[J]. Nature, 2001, 410(6828):541-548.
doi: 10.1038/35069000
[7] HE Q, YU M, LI Y, et al. Adhesion characteristics of a novel synthetic polydimethylsiloxane for bionic adhesive pads[J]. Journal of Bionic Engineering, 2014, 11(3):371-377.
doi: 10.1016/S1672-6529(14)60050-0
[8] VOLLRATH F, PORTER D. Spider silk as archetypal protein elastomer[J]. Soft Matter, 2006, 2(5):377-385.
doi: 10.1039/b600098n
[9] 张鸿昊, 林乃波, 刘向阳. 蚕丝和蜘蛛丝多级结构对力学性能的影响[J]. 功能高分子学报, 2018, 31(6):501-512.
ZHANG Honghao, LIN Naibo, LIU Xiangyang. Effect of multi-level structure of silk and spider silk on mechanical properties[J]. Journal of Functional Polymers, 2018, 31(6):501-512.
[10] AGNARSSON I, KUNTNER M, BLACKLEDGE T A. Bioprospecting finds the toughest biological material: extraordinary silk from a giant riverine orb spider[J]. PLoS One, 2010, 5(9):11234.
[11] 赵爱春, 夏庆友, 向仲怀, 等. 超级纤维蜘蛛丝的研究动向[J]. 蚕学通讯, 2007, 27(2):28-34.
ZHAO Aichun, XIA Qingyou, XIANG Zhonghai, et al. Research trend in superfiber spider silks[J]. Newsletter of Sericultural Science, 2007, 27(2):28-34.
[12] EISOLDT L, SMITH A, SCHEIBEL T. Decoding the secrets of spider silk[J]. Materials Today, 2011, 14(3):80-86.
doi: 10.1016/S1369-7021(11)70057-8
[13] AYOUB N A, GARB J E, TINGHITELLA R M, et al. Blueprint for a high-performance biomaterial: full-length spider dragline silk genes[J]. PLoS One, 2007, 2(6):514.
[14] SMITH D M, SMITH A S, LEWIS R V, et al. Analysis of the conserved N-terminal domains in major ampullate spider silk proteins[J]. Biomacromolecules, 2005, 6:3152-3159.
doi: 10.1021/bm050472b
[15] CHALLIS R J, GOODACRE S L, HEWITT G M. Evolution of spider silks: conservation and diversification of the C-terminus[J]. Insect Molecular Biology, 2006, 15(1):45-56.
doi: 10.1111/imb.2006.15.issue-1
[16] SPONNER A, UNGER E, GROSSE F, et al. Differential polymerization of the two main protein components of dragline silk during fibre spinning[J]. Nature Materials, 2005, 4(10):772-775.
doi: 10.1038/nmat1493
[17] HAYASHI C Y, SHIPLEY N H, LEWIS R V. Hypotheses that correlate the sequence, structure, and mechanical properties of spider silk proteins[J]. International Journal of Biological Macromolecules, 1999, 24(2/3):271-275.
doi: 10.1016/S0141-8130(98)00089-0
[18] CRAIG H C, PIORKOWSKI D, NAKAGAWA S, et al. Meta-analysis reveals materiomic relationships in major ampullate silk across the spider phylogeny[J]. Journal of the Royal Society Interface, 2020, 17(170):20200471.
doi: 10.1098/rsif.2020.0471
[19] MALAY A D, SUZUKI T, KATASHIMA T, et al. Spider silk self-assembly via modular liquid-liquid phase separation and nanofibrillation[J]. Science Advances, 2020. DOI: 10.1126/sciadv.abb6030.
doi: 10.1126/sciadv.abb6030
[20] KONO N, NAKAMURA H, MORI M, et al. Multicomponent nature underlies the extraordinary mechanical properties of spider dragline silk[J]. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118(31):2107065118.
[21] LIU R, DENG Q, YANG Z, et al. 'Nano-fishnet' structure making silk fibers tougher[J]. Advanced Functional Materials, 2016, 26(30):5534-5541.
doi: 10.1002/adfm.201600813
[22] LI S F, MCGHIE A J, TANG S L. New internal structure of spider dragline silk revealed by atomic forcemicroscopy[J]. Biophysical Journal, 1994, 66(4):1209-1212.
doi: 10.1016/S0006-3495(94)80903-8
[23] SPONNER A, VATER W, MONAJEMBASHI S, et al. Composition and hierarchical organisation of a spider silk[J]. PLoS One, 2007, 2(10):998.
[24] YAZAWA K, MALAY A D, MASUNAGA H, et al. Role of skin layers on mechanical properties and supercontraction of spider dragline silk fiber[J]. Macromolecular Bioscience, 2019, 19(3):1800220.
doi: 10.1002/mabi.v19.3
[25] DINJASKI N, KAPLAN D L. Recombinant protein blends: silk beyond natural design[J]. Current Opinion in Biotechnology, 2016, 39:1-7.
doi: 10.1016/j.copbio.2015.11.002
[26] ANDERSSON M, JIA Q, ABELLA A, et al. Biomimetic spinning of artificial spider silk from a chimeric minispidroin[J]. Nature Chemical Biology, 2017, 13(3):262-264.
doi: 10.1038/nchembio.2269
[27] ZHU H, SUN Y, YI T, et al. Tough synthetic spider-silk fibers obtained by titanium dioxide incorporation and formaldehyde cross-linking in a simple wet-spinning process[J]. Biochimie, 2020, 175:77-84.
doi: 10.1016/j.biochi.2020.05.003
[28] PENG Q, ZHANG Y, LU L, et al. Recombinant spider silk from aqueous solutions via a bio-inspired microfluidic chip[J]. Scientific Reports, 2016, 6:36473-36483.
doi: 10.1038/srep36473
[29] SCHMUCK B, GRECO G, BARTH A, et al. High-yield production of a super-soluble miniature spidroin for biomimetic high-performance materials[J]. Materials Today, 2021.DOI: 10.1016/j.mattod.2021.07.020.
doi: 10.1016/j.mattod.2021.07.020
[30] TSUCHIYA K, NUMATA K. Chemical synjournal of multiblock copolypeptides inspired by spider dragline silk proteins[J]. ACS Macro Letters, 2017, 6(2):103-106.
doi: 10.1021/acsmacrolett.7b00006
[31] GU L, JIANG Y, HU J. Scalable spider-silk-like supertough fibers using a pseudoprotein polymer[J]. Advanced Materials, 2019, 31(48):1904311.
doi: 10.1002/adma.v31.48
[32] DOU Y, WANG Z P, HE W Q, et al. Artificial spider silk from ion-doped and twisted core-sheath hydrogel fibres[J]. Nature Communications, 2019, 10(1):5293.
doi: 10.1038/s41467-019-13257-4
[33] CHU C K, JOSEPH A J, LIMJOCO M D, et al. Chemical tuning of fibers drawn from extensible hyaluronic acid networks[J]. Journal of the American Chemical Society, 2020, 142(46):19715-19721.
doi: 10.1021/jacs.0c09691
[34] ZHAO X, CHEN F, LI Y, et al. Bioinspired ultra-stretchable and anti-freezing conductive hydrogel fibers with ordered and reversible polymer chain alignment[J]. Nature Communications, 2018, 9(1):3579.
doi: 10.1038/s41467-018-05904-z
[35] YU Y, HE Y, MU Z, et al. Biomimetic mineralized organic-inorganic hybrid macrofiber with spider silk-like supertoughness[J]. Advanced Functional Materials, 2019, 30(6):1908556.
doi: 10.1002/adfm.v30.6
[36] KIM H, JANG Y, LEE D Y, et al. Bio-inspired stretchable and contractible tough fiber by the hybridization of GO/MWNT/polyurethane[J]. ACS Applied Materials & Interfaces, 2019, 11(34):31162-31168.
[37] KIM S H, KWON C H, PARK K, et al. Bio-inspired, moisture-powered hybrid carbon nanotube yarn mus-cles[J]. Scientific Reports, 2016, 6:23016.
doi: 10.1038/srep23016
[38] ZHAO C, ZHANG P, SHI R, et al. Super-tough and strong nanocomposite fibers by flow-induced alignment of carbon nanotubes on grooved hydrogel surfaces[J]. Science China Materials, 2019, 62(9):1332-1340.
doi: 10.1007/s40843-019-9421-y
[1] 闵小豹, 潘志娟. 生物质纤维/ 菠萝叶纤维多组分混纺纱线的品质与性能[J]. 纺织学报, 2022, 43(01): 74-79.
[2] 宋雪旸, 张岩, 徐成功, 王萍, 阮芳涛. 碳纤维/聚丙烯/聚乳酸增强复合材料的力学性能[J]. 纺织学报, 2021, 42(11): 84-88.
[3] 周濛濛, 蒋高明, 高哲, 郑培晓. 纬编衬经衬纬管状织物增强复合材料研究进展[J]. 纺织学报, 2021, 42(07): 184-191.
[4] 陆振乾, 杨雅茹, 荀勇. 纤维对水泥基复合材料性能影响研究进展[J]. 纺织学报, 2021, 42(04): 177-183.
[5] 左亚君, 蔡赟, 王蕾, 高卫东. 纯棉纱线合股数对织物性能的影响[J]. 纺织学报, 2021, 42(04): 74-79.
[6] 黄笛, 李芳, 李刚. 涤纶/蚕丝机织心脏瓣膜的制备及其性能[J]. 纺织学报, 2021, 42(02): 74-79.
[7] 孙亚博, 李立军, 马崇启, 吴兆南, 秦愈. 基于ABAQUS的筒状纬编针织物拉伸力学性能模拟[J]. 纺织学报, 2021, 42(02): 107-112.
[8] 杨萍, 严飙, 马丕波. 网状结构织物制备与应用研究进展[J]. 纺织学报, 2021, 42(01): 175-180.
[9] 陈美玉, 刘玉琳, 胡革明, 孙润军. 涡流纺纱线的包缠加捻对其力学性能的影响[J]. 纺织学报, 2021, 42(01): 59-66.
[10] 宋星, 金肖克, 祝成炎, 蔡冯杰, 田伟. 玻璃纤维/光敏树脂复合材料的3D打印及其力学性能[J]. 纺织学报, 2021, 42(01): 73-77.
[11] 汪希铭, 程凤, 高晶, 王璐. 交联改性对敷料用壳聚糖/聚氧化乙烯纳米纤维膜性能的影响[J]. 纺织学报, 2020, 41(12): 31-36.
[12] 刘淑强, 武捷, 吴改红, 阴晓龙, 李甫, 张曼. 纳米SiO2对玄武岩纤维的表面改性[J]. 纺织学报, 2020, 41(12): 37-41.
[13] 庞雅莉, 孟佳意, 李昕, 张群, 陈彦锟. 石墨烯纤维的湿法纺丝制备及其性能[J]. 纺织学报, 2020, 41(09): 1-7.
[14] 展晓晴, 李凤艳, 赵健, 李海琼. 超高分子量聚乙烯纤维的热力学稳定性能[J]. 纺织学报, 2020, 41(08): 9-14.
[15] 张祝辉, 张典堂, 钱坤, 徐阳, 陆健. 广角机织物的织造工艺及其偏轴拉伸力学性能[J]. 纺织学报, 2020, 41(08): 27-31.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 曹建达;顾小军;殷联甫. 用BP神经网络预测棉织物的手感[J]. 纺织学报, 2003, 24(06): 35 -36 .
[2] 【作者单位】:中国纺织工程学会秘书处【分类号】:+【DOI】:cnki:ISSN:0-.0.00-0-0【正文快照】:  香港桑麻基金会设立的“桑麻纺织科技奖” 0 0 年提名推荐工作;在纺织方面院士;专家和有关单位的大力支持下;收到了 个单位 (人 )推荐的 位候选人的. 2003年桑麻纺织科技奖获奖名单[J]. 纺织学报, 2003, 24(06): 107 .
[3] 【分类号】:Z【DOI】:cnki:ISSN:0-.0.00-0-0【正文快照】:  一;纺 纱模糊控制纺纱张力的研究周光茜等 ( - )………………原棉含杂与除杂效果评价方法的研究于永玲 ( - )……网络长丝纱免浆免捻功能的结构表征方法李栋高等 ( - )……………. 2003年纺织学报第二十四卷总目次[J]. 纺织学报, 2003, 24(06): 109 -620 .
[4] 张治国;尹红;陈志荣. 纤维前处理用精练助剂研究进展[J]. 纺织学报, 2004, 25(02): 105 -107 .
[5] 秦元春. 纺织工业发展方向初探[J]. 纺织学报, 2004, 25(02): 108 -110 .
[6] 高伟江;魏文斌. 纺织业发展的战略取向——从比较优势到竞争优势[J]. 纺织学报, 2004, 25(02): 111 -113 .
[7] 潘旭伟;顾新建;韩永生;程耀东. 面向协同的服装供应链快速反应机制研究[J]. 纺织学报, 2006, 27(1): 54 -57 .
[8] 黄小华;沈鼎权. 菠萝叶纤维脱胶工艺及染色性能[J]. 纺织学报, 2006, 27(1): 75 -77 .
[9] 王菊萍;殷佳敏;彭兆清;张峰. 活性染料染色织物超声波酶洗工艺[J]. 纺织学报, 2006, 27(1): 93 -95 .
[10] 罗军;费万春. 生丝中各层次茧丝数的概率分布[J]. 纺织学报, 2006, 27(2): 1 -4 .