纺织学报 ›› 2022, Vol. 43 ›› Issue (01): 15-20.doi: 10.13475/j.fzxb.20210905306

• 纤维材料 • 上一篇    下一篇

碳纤维增强类玻璃环氧高分子复合材料闭环回收利用

李博1,2, 樊威1,2(), 高兴忠1,2, 王淑娟3, 李志虎1,2   

  1. 1.西安工程大学 纺织科学与工程学院, 陕西 西安 710048
    2.西安工程大学 功能性纺织材料及制品教育部重点实验室, 陕西 西安 710048
    3.西安交通大学 化学学院, 陕西 西安 710049
  • 收稿日期:2021-09-15 修回日期:2021-11-05 出版日期:2022-01-15 发布日期:2022-01-28
  • 通讯作者: 樊威
  • 作者简介:李博(1996—),男,硕士生。主要研究方向为树脂基复合材料。
  • 基金资助:
    国家自然科学基金项目(52073224);国家自然科学基金项目(52173080);国家重点研发计划项目(2019YFA0706801);西北工业大学超高温结构复合材料重点实验室基金项目(6142911200310);西北工业大学超高温结构复合材料重点实验室基金项目(6142911200205);陕西省创新能力支撑计划项目(2020PT-043);陕西省自然科学基础研究计划项目(2021JQ-659)

Carbon fiber reinforced epoxy based vitrimer composite material closed-loop recycling

LI Bo1,2, FAN Wei1,2(), GAO Xingzhong1,2, WANG Shujuan3, LI Zhihu1,2   

  1. 1. School of Textile Science and Engineering, Xi'an Polytechnic University, Xi'an, Shaanxi 710048, China
    2. Key Laboratory of Functional Textile Material and Product, Ministry of Education, Xi'an Polytechnic University, Xi'an, Shaanxi 710048, China
    3. School of Chemistry, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
  • Received:2021-09-15 Revised:2021-11-05 Published:2022-01-15 Online:2022-01-28
  • Contact: FAN Wei

摘要:

为解决连续碳纤维增强树脂基复合材料(CFRP)回收再利用效率低、回收组分单一的问题,采用甲基四氢邻苯二甲酸酐、四氢邻苯二甲酸酐、催化剂乙酰丙酮锌和环氧树脂,制备出一种高性能的类玻璃环氧高分子树脂及其复合材料,经乙二醇参与酯交换反应,在180 ℃温度下对复合材料进行闭环回收。对原树脂、碳纤维和CFRP以及回收后的树脂、碳纤维和利用回收后树脂和碳纤维制备的CFRP的表观结构、热稳定性以及力学性能进行表征与分析。结果表明:该回收方法可完全回收和再加工复合材料的树脂与碳纤维;回收后树脂拉伸强度保持率为90.1%,碳纤维单丝拉伸强度保持率为98.9%,CFRP的弯曲强度和剪切强度保持率分别为86.2%和86.7%。

关键词: 碳纤维, 复合材料, 碳纤维增强树脂基复合材料, 闭环回收, 再加工

Abstract:

In order to solve the problem of low recycling efficiency and single recycling component of continuous carbon fiber reinforced resin matrix composite material (CFRP), methyl tetrahydrophthalic anhydride, tetrahydrophthalic anhydride, catalyst zinc acetylacetonate and epoxy resin were used to prepare a high-performance epoxy based vitrimer resin and its composite material. A closed-loop recycling was conducted involving the transesterification reaction of ethylene glycol (EG) at 180 ℃. Ethylene glycol participates in the transesterification reaction, and the composite material is recovered in a closed loop at 180 ℃. The apparent structure, thermal stability and mechanical properties of raw resin, carbon fiber and CFRP, recovered resin, carbon fiber and CFRP prepared from recovered resin and recovered carbon fiber were characterized and analyzed. The results show that the recoverying method can completely recover and reprocess the resin and carbon fiber of the composite material. After recycling, the retention rate of the tensile strength of the resin is 90.1%, the retention rate of the tensile strength of the carbon fiber monofilament is 98.9%, and the retention rate of the flexural strength and shear strength of CFRP are 86.2% and 86.7%, respectively.

Key words: carbon fiber, composite material, carbon fiber reinforced resin matrix composite material, closed-loop recycling, reprocessing

中图分类号: 

  • TB332

图1

类玻璃环氧高分子树脂固化过程"

图2

复合材料闭环回收流程图"

图3

原碳纤维和回收后碳纤维电镜照片"

图4

原环氧树脂浇注体和回收后环氧树脂浇注体的红外光谱图"

图5

类玻璃环氧高分子树脂醇解过程"

图6

原碳纤维和回收后碳纤维的热稳定性曲线"

图7

原CFRP和回收后CFRP弯曲应力-应变曲线"

图8

原CFRP和回收后CFRP剪切应力-应变曲线"

图9

原树脂浇注体和回收后树脂浇注体拉伸应力-应变曲线"

[1] 阮芳涛, 施建, 徐珍珍, 等. 碳纤维增强树脂基复合材料的回收及其再利用研究进展[J]. 纺织学报, 2019, 40(6): 152-157.
RUAN Fangtao, SHI Jian, XU Zhenzhen, et al. Research progress on recycling and reuse of carbon fiber reinforced resin matrix composites[J]. Journal of Textile Research, 2019, 40(6): 152-157.
[2] WITIK R A, TEUSCHER R, MICHAUD V, et al. Carbon fibre reinforced composite waste: an environmental assessrnent of recycling, energyrecovery and landfilling[J]. Composites Part A: Applied Science and Manufacturing, 2013, 49(1): 89-99.
doi: 10.1016/j.compositesa.2013.02.009
[3] JIANG G Z, PICKERING S J, LESTER E H, et al. Decomposition of epoxy resin in supercritical iso-propanol[J]. Industrial & Engineering Chemistry Research, 2010, 49(10): 4535-4541.
doi: 10.1021/ie901542z
[4] MARREF M, MIGNARD N, JEGAT C, et al. Epoxy-amine based thermoresponsive networks designed by Diels-Alder reactions[J]. Polymer International, 2013, 62(1): 87-98.
doi: 10.1002/pi.4287
[5] PIMENTA S, PINHO S T. Recycling carbon fibre re-inforced polymers for structural applications: technology review and market outlook[J]. Waste Management, 2011, 31(2): 378-392.
doi: 10.1016/j.wasman.2010.09.019
[6] 陈平, 刘胜平, 王德中. 环氧树脂及其应用[M]. 北京: 化学工业出版社, 2011:70-73.
CHEN Ping, LIU Shengping, WANG Dezhong. Epoxy resin and its application[M]. Beijing: Chemical Industry Press, 2011:70-73.
[7] PEI Z Q, YANG Y, CHEN Q M, et al. Mouldable liquid crstalline elastomer actuators with exchangeable covalent bonds[J]. Nat Mater, 2014(13): 36-41.
[8] 张希. 可多次塑型、易修复及耐低温的三维动态高分子结构[J]. 高分子学报, 2016(6): 685-687.
ZHANG Xi. A three-dimensional dynamic polymer structure that can be molded repeatedly, easily repaired and resistant to low temperatures[J]. Acta Polymerica Sinica, 2016(6): 685-687.
[9] WANG S J, WANG B, ZHANG X T, et al. Fully recyclable and reprocessable polystyrene-based vitrimers with improved thermal stability and mechanical properties through nitrogen-coordinating cyclic boronic ester bonds[J]. Applied Surface Science, 2021, 570:151157.
doi: 10.1016/j.apsusc.2021.151157
[10] MAEDA T, OTSUKA H, TAKAHARA A. Dynamic cov alent polymers: reorganizable polymers with dy namic covalent bonds[J]. Progress in Polymer Science, 2009(34): 581-604.
[11] SI H W, ZHOU L, WU Y P, et al. Rapidly reprocessable, degradable epoxy vitrimer and recyclable carbon fiber reinforced thermoset composites relied on high contents of exchangeable aromatic disulfide crosslinks[J]. Composites Part B: Engineering, 2020(199): 108278.
[12] 金鑫, 隋刚, 杨小平. T700碳纤维/环氧树脂复合材料热降解实验研究[J]. 玻璃钢/复合材料, 2017(11): 56-61.
JIN Xin, SUI Gang, YANG Xiaoping. Experimental study on thermal degradation of T700 carbon fiber/epoxy resin composites[J]. FRP/Composite Materials, 2017(11): 56-61.
[13] DANG W R, KUBOUCHI M, YAMAMOTO S, et al. An approach to chemical reycling of epoxy resin cured with amine using acid[J]. Polymer, 2002, 43(10): 2953-2958.
doi: 10.1016/S0032-3861(02)00100-3
[14] WANG S J, XING X L, ZHANG X T, et al. Room-temperature fully recyclable carbon fibre reinforced phenolic composites through dynamic covalent boronic ester bonds[J]. Journal of Materials Chemistry A, 2018, 6(23): 10868-10878.
doi: 10.1039/C8TA01801D
[15] 王艳萍, 刘晓琴, 井新利, 等. 环氧树脂类玻璃高分子研究进展[J]. 化学通报, 2021, 84(4): 313-321.
WANG Yanping, LIU Xiaoqin, JING Xinli, et al. Research progress in epoxy vitrimer[J]. Chemical Bulletin, 2021, 84(4): 313-321.
[16] 司鸿玮, 陈茂, 周琳, 等. 可交换酯键的密度对环氧类玻璃高分子动态性能的影响[J]. 西南科技大学学报, 2020, 35(3): 1-7.
SI Hongwei, CHEN Mao, ZHOU Lin, et al. Impact of the density of exchangeable ester bonds on the dynamic properties of epoxy vitrimers[J]. Journal of Southwest University of Science and Technology, 2020, 35(3): 1-7.
[17] BOWMAN C N, KLOXIN C J. Covalent adaptable net works: reversible bond structures incorporated in polymer networks[J]. Angewandte Chemie International Edition, 2012, 51(18): 4272-4274.
doi: 10.1002/anie.201200708
[18] 施晓霞, 李泽宏, 顾伯洪. 单向复合材料弯曲疲劳性能[J]. 纺织学报, 2002, 23(5): 44-44.
SHI Xiaoxia, LI Zehong, GU Bohong. Bending fatigue properties of unidirectional composite materials[J]. Journal of Textile Research, 2002, 23(5): 44-44.
[19] ZHANG X Q, FAN X Y, YAN C, et al. Interfacial microstructure and properties of carbon fiber composites modified with graphene oxide[J]. ACS Applied Materials Interfaces, 2012, 4(3): 1543-1552.
doi: 10.1021/am201757v
[1] 李珍珍, 支超, 余灵婕, 朱海, 杜明娟. 废棉再生气凝胶/经编间隔织物复合材料的制备及其性能[J]. 纺织学报, 2022, 43(01): 167-171.
[2] 强荣, 冯帅博, 李婉莹, 尹琳芝, 马茜, 陈博文, 陈熠. 生物质衍生磁性碳基复合材料的制备及其吸波性能[J]. 纺织学报, 2022, 43(01): 21-27.
[3] 吕丽华, 李臻, 张多多. 废弃秸秆/聚己内酯吸声复合材料的制备与性能[J]. 纺织学报, 2022, 43(01): 28-35.
[4] 袁琼, 邱海鹏, 谢巍杰, 王岭, 王晓猛, 张典堂, 钱坤. 三维六向编织SiCf/SiC复合材料的力学行为及其损伤机制[J]. 纺织学报, 2021, 42(12): 81-89.
[5] 陈海鸟, 田伟, 金肖克, 张红霞, 李艳清, 祝成炎. 基于三维显微成像的毛竹横截面结构表征[J]. 纺织学报, 2021, 42(12): 49-54.
[6] 魏小玲, 李瑞雪, 秦卓, 胡新荣, 林富生, 刘泠杉, 龚小舟. 经向T结构预制体成型关键技术[J]. 纺织学报, 2021, 42(11): 51-55.
[7] 普丹丹, 傅雅琴. 涤纶织物/聚氯乙烯-中空微珠复合材料的制备及其隔声性能[J]. 纺织学报, 2021, 42(11): 77-83.
[8] 宋雪旸, 张岩, 徐成功, 王萍, 阮芳涛. 碳纤维/聚丙烯/聚乳酸增强复合材料的力学性能[J]. 纺织学报, 2021, 42(11): 84-88.
[9] 魏发云, 杨帆, 王海楼, 于斌, 邹学书, 张伟. 改性聚乙烯醇纤维增强水泥基复合材料制备及其力学性能[J]. 纺织学报, 2021, 42(10): 53-60.
[10] 胡侨乐, 边国丰, 邱夷平, 魏毅, 徐珍珍. 高速列车地板用蜂窝夹芯结构复合材料隔声性能[J]. 纺织学报, 2021, 42(10): 75-83.
[11] 万振凯, 贾敏瑞, 包玮琛. 三维编织复合材料中碳纳米管纱线嵌入位置和数量的优化配置[J]. 纺织学报, 2021, 42(09): 76-82.
[12] 檀江涛, 蒋高明, 高哲, 郑培晓. 抗低速冲击纺织复合材料头盔壳体研究进展[J]. 纺织学报, 2021, 42(08): 185-193.
[13] 任丽冰, 陈利, 焦伟. 基于一元二次函数的层联机织预制体细观结构表征[J]. 纺织学报, 2021, 42(08): 76-83.
[14] 张婷婷, 许可欣, 金梦甜, 葛世洁, 高国洪, 蔡一啸, 王华平. 纤维素基有机-无机纳米光催化复合材料制备及其水处理应用的研究进展[J]. 纺织学报, 2021, 42(07): 175-183.
[15] 周濛濛, 蒋高明, 高哲, 郑培晓. 纬编衬经衬纬管状织物增强复合材料研究进展[J]. 纺织学报, 2021, 42(07): 184-191.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 赵良臣;闻涛. 旋转组织设计的数学原理[J]. 纺织学报, 2003, 24(06): 33 -34 .
[2] 曹建达;顾小军;殷联甫. 用BP神经网络预测棉织物的手感[J]. 纺织学报, 2003, 24(06): 35 -36 .
[3] 【作者单位】:中国纺织工程学会秘书处【分类号】:+【DOI】:cnki:ISSN:0-.0.00-0-0【正文快照】:  香港桑麻基金会设立的“桑麻纺织科技奖” 0 0 年提名推荐工作;在纺织方面院士;专家和有关单位的大力支持下;收到了 个单位 (人 )推荐的 位候选人的. 2003年桑麻纺织科技奖获奖名单[J]. 纺织学报, 2003, 24(06): 107 .
[4] 【分类号】:Z【DOI】:cnki:ISSN:0-.0.00-0-0【正文快照】:  一;纺 纱模糊控制纺纱张力的研究周光茜等 ( - )………………原棉含杂与除杂效果评价方法的研究于永玲 ( - )……网络长丝纱免浆免捻功能的结构表征方法李栋高等 ( - )……………. 2003年纺织学报第二十四卷总目次[J]. 纺织学报, 2003, 24(06): 109 -620 .
[5] 邓炳耀;晏雄. 热压对芳纶非织造布机械性能的影响[J]. 纺织学报, 2004, 25(02): 103 -104 .
[6] 张治国;尹红;陈志荣. 纤维前处理用精练助剂研究进展[J]. 纺织学报, 2004, 25(02): 105 -107 .
[7] 秦元春. 纺织工业发展方向初探[J]. 纺织学报, 2004, 25(02): 108 -110 .
[8] 高伟江;魏文斌. 纺织业发展的战略取向——从比较优势到竞争优势[J]. 纺织学报, 2004, 25(02): 111 -113 .
[9] 姚玉元;陈文兴;张利;潘勇. 催化氧化型消臭蚕丝纤维的研究[J]. 纺织学报, 2004, 25(03): 7 -8 .
[10] 潘旭伟;顾新建;韩永生;程耀东. 面向协同的服装供应链快速反应机制研究[J]. 纺织学报, 2006, 27(1): 54 -57 .