纺织学报 ›› 2023, Vol. 44 ›› Issue (05): 77-83.doi: 10.13475/j.fzxb.20210905801

• 纤维材料 • 上一篇    下一篇

纳米纤维复合结构空气过滤材料性能研究

胡蝶飞1,2, 王琰1,3, 姚菊明2,3,4,5, 祝国成1,2,3()   

  1. 1.浙江理工大学 纺织科学与工程学院, 浙江 杭州 310018
    2.浙江省现代纺织技术创新中心(鉴湖实验室), 浙江 绍兴 312000
    3.浙江理工大学 浙江-捷克先进纤维材料联合实验室, 浙江 杭州 310018
    4.浙江理工大学 材料科学与工程学院, 浙江 杭州 310018
    5.宁波大学 材料科学与化学工程学院, 浙江 宁波 315201
    6.利贝雷茨理工大学 纺织工程学院, 捷克 利贝雷茨 46117
  • 收稿日期:2021-09-16 修回日期:2023-01-23 出版日期:2023-05-15 发布日期:2023-06-09
  • 通讯作者: 祝国成(1984—),男,副教授,博士。主要研究方向为纤维过滤材料。E-mail:gchengzhu@zstu.edu.cn。
  • 作者简介:胡蝶飞(1997—),女,硕士生。主要研究方向为空气过滤材料。
  • 基金资助:
    国家自然科学基金项目(51803182);浙江省“尖兵”“领雁”研发攻关计划项目(2023C01194);浙江理工大学基本科研业务费专项资金资助项目(22202304-Y)

Study on performance of nanofiber air filter materials

HU Diefei1,2, WANG Yan1,3, YAO Juming2,3,4,5, DAS Ripon1,3, MILITKY Jiri6, VENKATARAMAN Mohanapriya6, ZHU Guocheng1,2,3()   

  1. 1. College of Textile Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
    2. Zhejiang Provincial Innovation Center of Advanced Textile Technology, Shaoxing, Zhejiang 312000, China
    3. Zhejiang-Czech Joint Laboratory of Advanced Fiber Materials, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
    4. School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
    5. School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315201, China
    6. Faculty of Textile Engineering, Technical University of Liberec, Liberec 46117, Czech Republic
  • Received:2021-09-16 Revised:2023-01-23 Published:2023-05-15 Online:2023-06-09

摘要:

为深入探究影响纳米纤维膜过滤机制以开发和应用高端空气过滤材料,分析了静电纺纳米纤维膜和聚四氟乙烯拉伸膜与非织造布复合的空气过滤材料结构与性能,分别对其形貌、热力学性能、透气性等进行了分析与评价。实验结果表明,过滤材料本身的结构和纤维直径以及表面电势对其过滤性能影响显著,纤维直径越细,膜孔径越小,纤维间的结构会相对紧密,从而导致透气性较差,过滤效率更好。其中表面电势是影响材料过滤效率的主要因素,表面电势越高,过滤效果越好。静电纺锦纶6纳米纤维膜/聚酯纤维非织造布(PA6/PET)复合空气过滤材料表面电势最高,达1.414 kV,其过滤效率最佳,达到99.57 %。PA6/木浆纸复合过滤材料表面电势最小,为0.07 kV,过滤效果仅为22.28 %。

关键词: 静电纺, 纳米纤维膜, 聚四氟乙烯, 复合结构, 过滤效率, 非织造布

Abstract:

Objective Filtration performance of air filtration membrane in high-end application has always been a main concern, attracting much research. The electrospun nanofiber membrane and polytetrafluoroethylene (PTFE) microporous membrane are the widely used membranes as high-end air filtration membrane. In order to further investigate the filtration mechanism of nanofiber air filter materials, to understand the correlations between structure features and their filtration performance, and to provide useful guidance for development and application of high-end air filter materials, these six types of filter composite materials are made from nanofiber structure, which is usually used for high-end air filter materials.

Method These six types of filter composite materials were selected. The structure feature is the main factor influencing the filtration performance of air filter materials, and the electrostatic adsorption is also playing an important role in filtration performance. Therefore, the evaluation of air filter materials in structure, electrostatic adsorption and filtration performance were carried out.

Results PA6/PET filter composite materials was found to have the highest surface potential which reached to 1.414 kV and its filtration efficiency reached to 99.57%. In contrast, the composite materials with wood pulp paper as substrate showed the lowest surface potential which was 0.070 kV, corresponding to a filtration efficiency of 22.28%, due to the lack of electrostatic adsorption. The crystallinities of samples 1#- 6# were 40.7%、39.4%、44.2%、51.7%、47.6% and 43.5%, respectively. The pressure drops of ePTFE/ES hot-air cotton nonwoven filter composite materials, PTFE/ES hot-rolled nonwoven filter composite materials, and PTFE/ES hot-air cotton nonwoven filter composite materials were 59.7 Pa, 45.6 Pa, 58.8 Pa. The fiber diameter and structure of air filtration membrane also showed to have significant influence on the filtration performance of air filter materials. The smaller fiber diameter, smaller pore size, higher thickness, higher specific surface area resulted in a higher pressure drop and higher filtration efficiency.

Conclusion The surface potential played the most important role in filtration performance of filter composite materials, the higher surface potential led to a higher filtration efficiency. Besides, the fiber diameter and pore structure and its distribution also had significant influence on filtration performance of filter composite materials. PTFE mirco-porous membrane was produced by stretching, which had lower pressure drop comparing with the nanofibrous membrane produced from electrospinning.

Key words: electrospinning, nanofiber membrane, polytetrafluoroethylene, composite structure, filtration efficiency, nonwoven

中图分类号: 

  • TS151

表1

空气滤材基本信息"

试样编号 膜材料 基材
1# 静电纺聚偏氟乙烯(PVDF)纳米纤维膜 聚丙烯(PP)熔喷布
2# 静电纺锦纶6(PA6)纳米纤维复合膜 纺粘聚酯(PET)非织造布
3# 膨体聚四氟乙烯(ePTFE)纳米膜 ES热风棉
4# 聚四氟乙烯(PTFE)纳米膜 热轧非织造布
5# 聚四氟乙烯纳米膜 ES热风棉
6# 静电纺PA6纳米纤维膜 木浆纸

图1

不同纳米纤维膜SEM照片及纤维直径分布图"

图2

不同复合过滤材料的孔径分布图"

图3

复合过滤材料的X射线衍射光谱图"

图4

复合过滤材料的TG曲线"

图5

复合过滤材料的红外光谱图"

表2

复合过滤材料的过滤性能"

样品编号 过滤效率/% 过滤阻力/Pa 品质因数/Pa-1
1# 97.59±0.063 47.3±6.94 0.079
2# 99.57±1.714 100.5±1.80 0.054
3# 97.62±0.716 59.7±2.49 0.063
4# 98.03±0.447 45.6±1.74 0.086
5# 99.41±0.279 58.8±1.60 0.087
6# 22.28±1.857 76.0±2.23 0.003
[1] 刘超, 代子荐, 柯勤飞. 静电纺复合空气过滤材料的制备及其性能[J]. 东华大学学报(自然科学版), 2019, 45(4):490-494.
LIU Chao, DAI Zijian, KE Qinfei. Preparation and properties of electrospinning composite air filter mate-rials[J]. Journal of Donghua University(Natural Science), 2019, 45(4):490-494.
[2] MA P X, ZHANG R. Synthetic nano-scale fibrous extracellular matrix[J]. Journal of Biomedical Materials Research, 1999, 46(1):60-72.
doi: 10.1002/(sici)1097-4636(199907)46:1<60::aid-jbm7>3.0.co;2-h pmid: 10357136
[3] 胡晓敏, 高杨, 吴宁, 等. 静电纺丝制备无机纳米纤维及应用进展[J]. 山东纺织科技, 2016, 57(1):52-56.
HU Xiaomin, GAO Yang, WU Ning, et al. Analysis of several commonly used auxiliaries in textile[J]. Shandong Textile Science & Technology, 2016, 57(1):52-56.
[4] FENG L, LI S, LI H, et al. Super-hydrophobic surface of aligned polyacrylonitrile nanofibers[J]. Angewandte ChemieInternational Edition, 2002, 41(7):1221-1233.
[5] ONDARCUHU T, JOACHIM C. Drawing a single nanofibre over hundreds of microns[J]. Europhysics Letters, 1998, 42(2):215-220.
doi: 10.1209/epl/i1998-00233-9
[6] DEITZEL J M, KLEINMEYER J D, HIRVONEN J K, et al. Controlled deposition of electrospun poly(ethylene oxide)fibers[J]. Polymer, 2001, 42(19):8163-8170.
doi: 10.1016/S0032-3861(01)00336-6
[7] LEUNG W W, HUANG C, YUEN P. Effect of face velocity,nanofiber packing density and thickness on filtration performance of filters with nanofibers coated on substrate[J]. Separation and Purification Technology, 2010, 71(1): 1-37.
doi: 10.1016/j.seppur.2009.06.008
[8] ZHANG Q, WELCH J, PARK H, et al. Improvement in nanofiber filtration by multiple thin layers of nanofiber mats[J]. Journal of Aerosol Science, 2010, 41(2): 230-236.
doi: 10.1016/j.jaerosci.2009.10.001
[9] 吴剑波. 空气过滤材料用聚烯烃原纤化纤维的研究[J]. 山东纺织科技, 2019, 60(2):1-6.
WU Jianbo. Study of polyolefin fibrillating fiber for air filtration material[J]. Shandong Textile Science & Technology, 2019, 60(2):1-6.
[10] 黄景莹, 吴海波. 热处理对聚丙烯熔喷非织造布性能的影响[J]. 产业用纺织品, 2012(3):29-32.
HUANG Jingying, WU Haibo. Effect of heat treatment on property of PP meltblown nonwovens[J]. Technical Textiles, 2012(3):29-32.
[11] KE K, PÖTSCHKE P, JEHNICHEN D, et al. Achieving β-phase poly (vinylidene fluoride) from melt cooling: effect of surface functionalized carbon nanotubes[J]. Polymer, 2014, 55(2): 611-619.
doi: 10.1016/j.polymer.2013.12.014
[12] GUO X Y, GU L X, FENG X X. The glass transition, crystallization, and meltingcharacteristics of a class of polyester ionomers[J]. Journal of Applied Polymer science, 2002, 86(14):3660-3666.
doi: 10.1002/(ISSN)1097-4628
[13] GURATO G, FICHERA A, GRANDI F Z, et al. Crystallinity and polymorphism of 6-polyamide[J]. Die Makromolekulare Chemie, 1974, 175(3): 953-975.
doi: 10.1002/macp.1974.021750322
[14] 杨梅, 孙润军. 静电纺壳聚糖/聚乙烯醇纳米纤维膜的制备及表征[J]. 化工新型材料, 2019, 47(4):120-124.
YANG Mei, SUN Runjun. Preparation and characterization of electrospun chitosan/PVA nanofiber membrane[J]. New Chemical Materials, 2019, 47(4):120-124.
[15] MAEKAWA H, BALLANO G, TONIOLO C, et al. Linear and two-dimensional infrared spectroscopic study of the amide I and II modes in fully extended peptide chains[J]. The Journal of Physical Chemistry B, 2011, 115(18): 5168-5182.
doi: 10.1021/jp105527n
[16] MAEKAWA H, GE N H. Comparative study of electrostatic models for the amide-I and-II modes: linear and two-dimensional infrared spectra[J]. The Journal of Physical Chemistry B, 2010, 114(3): 1434-1446.
doi: 10.1021/jp908695g
[17] WANG J. Ab initio-based all-mode two-dimensional infrared spectroscopy of a sugar molecule[J]. The Journal of Physical Chemistry B, 2007, 111(31): 9193-9196.
doi: 10.1021/jp074757p
[18] 马娟. 亲水抗静电聚酯和纤维的制备及性能研究[D]. 天津: 天津工业大学, 2017:24-25.
MA Juan. Preparation and properties of hydrophilic antistatic polyester and fiber[D]. Tianjin:Tiangong University, 2017:24-25.
[1] 杜迅, 陈莉, 何劲, 李晓娜, 赵美奇. 具有伤口监测功能的比色传感纳米纤维膜的制备及其性能[J]. 纺织学报, 2023, 44(05): 70-76.
[2] 周堂, 汪邓兵, 赵磊, 刘祖一, 凤权. 负载WO3的细菌纤维素/Au膜制备及其催化性能[J]. 纺织学报, 2023, 44(04): 16-23.
[3] 李好义, 贾紫初, 刘宇亮, 谭晶, 丁玉梅, 杨卫民, 牟文英. 高压静电加载形式对聚合物熔体静电直写制备效果的影响[J]. 纺织学报, 2023, 44(04): 32-37.
[4] 张少月, 岳江昱, 杨家乐, 柴晓帅, 冯增国, 张爱英. 环境友好聚己内酯基复合相变纤维膜的制备及其性能[J]. 纺织学报, 2023, 44(03): 11-18.
[5] 陈萌, 何瑞东, 程怡昕, 李纪伟, 宁新, 王娜. 磁控溅射银/锌改性聚苯乙烯/聚偏氟乙烯复合纤维膜的制备及其性能[J]. 纺织学报, 2023, 44(03): 19-27.
[6] 何满堂, 王黎明, 覃小红, 俞建勇. 静电纺纳米纤维在界面太阳能蒸汽转化应用中的研究进展[J]. 纺织学报, 2023, 44(03): 201-209.
[7] 杨广鑫, 张庆乐, 李小超, 李思瑜, 陈辉, 程璐, 夏鑫. 热诱导熔接聚氨酯/聚二甲基硅氧烷防水透湿膜的制备及其性能优化[J]. 纺织学报, 2023, 44(03): 28-35.
[8] 葛铖, 郑元生, 刘凯, 辛斌杰. 电压对静电纺串珠纤维成形过程的影响[J]. 纺织学报, 2023, 44(03): 36-41.
[9] 周泠卉, 曾佩, 鲁瑶, 付少举. 聚乙烯醇纳米纤维膜/罗纹空气层织物复合吸声材料的制备及其性能[J]. 纺织学报, 2023, 44(03): 73-78.
[10] 牛丽, 刘青, 陈超余, 蒋高明, 马丕波. 仿生鳞片针织结构自供能传感织物的制备及其性能[J]. 纺织学报, 2023, 44(02): 135-142.
[11] 周歆如, 胡铖烨, 范梦晶, 洪剑寒, 韩潇. 双针头连续水浴静电纺的电场模拟及其纳米纤维包芯纱结构[J]. 纺织学报, 2023, 44(02): 27-33.
[12] 周文, 俞建勇, 张世超, 丁彬. 基于绿色溶剂的聚酰胺纳米纤维膜制备及其空气过滤性能[J]. 纺织学报, 2023, 44(01): 56-63.
[13] 楚艳艳, 李施辰, 陈超, 刘莹莹, 黄伟韩, 张越, 陈晓钢. 柔性抗冲击纺织材料及其结构的研究进展[J]. 纺织学报, 2022, 43(12): 203-212.
[14] 王洪杰, 姚岚, 王赫, 张仲. 医用口罩熔喷非织造布电极的制备及其电化学性能[J]. 纺织学报, 2022, 43(12): 22-28.
[15] 金关秀, 祝成炎. 基于图像模拟和支持向量机的复合非织造布孔隙尺寸预测[J]. 纺织学报, 2022, 43(12): 75-81.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!