纺织学报 ›› 2023, Vol. 44 ›› Issue (01): 71-78.doi: 10.13475/j.fzxb.20210908308

• 纤维材料 • 上一篇    下一篇

聚苯硫醚/石墨烯纳米复合纤维的燃烧和炭化行为

代璐1,2, 胡泽旭2,3, 王研1,2, 周哲1,2(), 张帆4, 朱美芳1,2   

  1. 1.东华大学 材料科学与工程学院, 上海 201620
    2.东华大学 纤维材料改性国家重点实验室, 上海 201620
    3.东华大学 机械工程学院, 上海 201620
    4.上海绪光纤维材料科技有限公司, 上海 200444
  • 收稿日期:2021-09-24 修回日期:2022-04-30 出版日期:2023-01-15 发布日期:2023-02-16
  • 通讯作者: 周哲(1971—),男,副研究员,博士。主要研究方向为聚合物纤维。E-mail:zzhe@dhu.edu.cn
  • 作者简介:代璐(1996—),女,硕士生。主要研究方向为聚苯硫醚纤维。
  • 基金资助:
    国家自然科学基金青年基金项目(51903037);国家自然科学基金青年基金项目(52003042);中央高校基本科研业务费专项资金资助项目(2232021D-21);上海市研发与转化功能型平台建设项目(17DZ2260500)

Combustion and charring behavior of polyphenylene sulfide/graphene nanocomposite fibers

DAI Lu1,2, HU Zexu2,3, WANG Yan1,2, ZHOU Zhe1,2(), ZHANG Fan4, ZHU Meifang1,2   

  1. 1. College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
    2. State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai 201620, China
    3. College of Mechanical Engineering, Donghua University, Shanghai 201620, China
    4. Shanghai Xuguang Fiber Material Technology Co., Ltd., Shanghai 200444, China
  • Received:2021-09-24 Revised:2022-04-30 Published:2023-01-15 Online:2023-02-16

摘要:

为解决聚苯硫醚(PPS)纤维在燃烧过程中热释放和烟释放较高的问题,实现其在热防护服领域的应用,将石墨烯(G)添加至PPS基体中,通过共混造粒与熔融纺丝工艺制备PPS/G纳米复合纤维,对复合纤维的聚集态结构及力学性能进行测试,并研究其燃烧和炭化行为。结果表明:石墨烯可显著提高聚苯硫醚纳米复合纤维的燃烧残炭量及炭层结构的致密性,当石墨烯质量分数达0.3%时,PPS/G纳米复合纤维织物的热释放速率峰值从67 kW/m2降低至28 kW/m2;当石墨烯质量分数为0.7%时,总热释放和总产烟量均下降最多,分别降低62%和66%,燃烧性能得到显著改善;且所得复合纤维能够保持更高的断裂强度和断裂伸长率,有望应用于阻燃防护织物领域。

关键词: 纳米纤维, 复合纤维, 热防护织物, 聚苯硫醚, 石墨烯, 热释放, 烟释放

Abstract:

Objective Poplyphenylene sulfide (PPS) fiber has outstanding performance and cost advantage, and can be used for making heat protection fabrics. However, when it burns, the release of heat and smoke is likely to cause damage to human body. The loose charcoal layer of its combustion will lead to high thermal and smoke release, which will cause harm to the human body. This paper is proposed to improve the structure of PPS burning charcoal layer to achieve low release of heat and smoke, and explores the applications of PPS in engineering thermal protection fabrics.
Method Based on the obstruction effect of graphene (G) and its application in the field of flame retardancy, graphene was introduced to the PPS matrix and melting spinning was adopted to prepare PPS/G fiber. In the study, the crystallinity and orientation structures of the fiber were explored by differential scanning calorimeter and an X-ray diffractometer, and the mechanical properties of the fiber were also investigated. The PPS/G fiber was made into fabrics, cone is adopted to study the heat and smoke release of combustion, and the Raman maps and SEM images of the burning charcoal layer were adopted to clarify the changing mechanism of combustion behavior.
Results PPS/G fibers were prepared by introducing graphene into the PPS matrix, and its microstructure and physical images suggested the characteristics of smoothness and uniformity, indicating that graphene can be well dispersed in the PPS matrix and that the fiber forming process is relatively stable. The mechanical properties of PPS/G fibers were positively influenced by graphene, and the breaking strength and elongation at break were both improved prominently (Fig.3). When the content of graphene was 0.5%, the breaking strength of the fiber was increased to 4.63 cN/dtex, while when the content of graphene was 0.3%, the elongation at break was increased to 22.01%. The improvement of mechanical properties is very beneficial for the application of fiber. In the aspect of combustion performance, the addition of graphene has a significant inhibitory effect on smoke release and heat release. The doped of graphene reduced the peak heat release rate (PHRR) of PPS from 67 kW/m2 to 28 kW/m2, the total heat release (THR) was reduced from 3.38 MJ/m2 to 1.28 MJ/m2, and the total smoke production was reduced from 1.055 m2 to 0.358 7 m2 (Fig.5). All these can be attributed to the change of combustion residual carbon. On the one hand, the quality of combustion residual carbon was significantly improved, at 800 ℃, the residual carbon content of PPS/G fiber was significantly higher than that of pure PPS (Fig.4). On the other hand, the change in structure of carbon residue was obvious. The compactness of the residual carbon is significantly increased, and the carbon layer of PPS/G fabric exhibited a non-porous nature (Fig.6). It is found that the graphitization degree of carbon layer was also significantly increased (Fig.7). The conversion of carbon content and structure is beneficial to inhibit the heat and smoke release, which is the key to the change of PPS/G fabric combustion performance.
Conclusion With the addition of graphene, the barrier effect of carbon layer in PPS/G combustion was effectively increased, and the heat release and smoke release of PPS fabric were significantly reduced. However, for the demand of thermal protection fabric, the blending and other processes need to be further explored to achieve higher heat blockage and smoke inhibitory effects. New solutions that meet the advantages of price and heat protection need to be further sought.

Key words: nanofiber, composite fiber, thermal protection fabric, polyphenylene sulfide, graphene, heat release, smoke release

中图分类号: 

  • TS195

图1

PPS/G纳米复合纤维制备过程示意图"

图2

PPS纤维及PPS/G纳米复合纤维、织物实物图及纤维断面与表面SEM照片"

图3

PPS纤维及PPS/G纳米复合纤维的力学性能"

表1

熔融和结晶参数"

样品编号 Tc/℃ Tm/℃ ΔHm/(J·g-1) ΔT/ Xc/%
1# 224.41 284.25 38.39 60.12 43
2# 240.05 285.69 39.38 45.64 44
3# 241.30 285.78 41.56 44.48 47
4# 243.09 285.07 43.67 41.98 49
5# 243.50 285.36 43.52 41.86 49
6# 244.56 284.77 42.54 40.21 48

表2

基于广角X射线衍射(WAXD)积分曲线得到的半高宽和择优取向度"

样品编号 赤道线上衍射光积分曲线半宽高之和/(°) Π/%
1# 17.05 95.3
2# 16.20 95.5
3# 16.15 95.5
4# 17.49 95.1
5# 17.94 95.0
6# 20.66 94.3

图4

PPS纤维及PPS/G纳米复合纤维在氮气氛围中的热失重及热失重速率曲线"

图5

PPS织物及PPS/G纳米复合纤维织物的热释放速率、总热释放和总产烟量曲线"

图6

PPS织物及PPS/G纳米复合纤维织物燃烧残炭的SEM照片"

图7

PPS织物及PPS/G纳米复合纤维织物燃烧残炭的拉曼图谱"

图8

PPS/G纳米复合材料织物隔热抑烟机制"

[1] 何阳. 纺织品的阻燃处理及国内现状分析[J]. 福建轻纺, 2018(7):45-50.
HE Yang. The flame-retardant treatment of textiles and the analysis of the current domestic situation[J]. Fujian Textile, 2018 (7): 45-50.
[2] 周明华, 黄勤. 芳砜纶火灾防护用品的阻燃性及热防护性[J]. 合成纤维, 2016, 45(2): 48-50.
ZHOU Minghua, HUANG Qin. Flame retardancy and thermal protection of sulfonamide fire protection products[J]. Synthetic Fiber in China, 2016, 45(2): 48-50.
[3] CHENG Stephen Z D, WU Zongquan, WUNDERLICH Bernhard. Glass-transition and melting behavior of poly(thio-1,4-phenylene)[J]. Macromolecules, 1987, 20(11): 2802-2810.
doi: 10.1021/ma00177a028
[4] LOPEZ Leonardo C, WILKES Garth L. Poly (p-phenylene sulfide): an overview of an important engineering thermoplastic[J]. Journal of Macromolecular Science Part C, 1989, 29 (1): 83-151.
doi: 10.1080/07366578908055165
[5] 俞森龙, 相恒学, 周家良, 等. 典型高分子纤维发展回顾与未来展望[J]. 高分子学报, 2020, 51(1): 1-13.
YU Senlong, XIANG Hengxue, ZHOU Jialiang, et al. Typical polymer fiber development review and future prospects[J]. Acta Polymerica Sinica, 2020, 51(1): 1-13.
[6] DÍEZ-PASCUAL Ana M, NAFFAKH Mohammed. Enhancing the thermomechanical behaviour of poly(phenylene sulphide) based composites via incorporation of covalently grafted carbon nanotubes[J]. Composites Part A: Applied Science and Manufacturing, 2013, 54: 10-19.
doi: 10.1016/j.compositesa.2013.06.018
[7] MONTAUDO G, PUGLISI C, SCAMPOR Rino E, et al. Mass-spectrometric analysis of the thermal-degradation products of poly (ortho-phenylene, meta-phenylene, and para-phenylene sulfide) and of the oligomers produced in the synthesis of these polymers[J]. Macromolecules, 1986, 19 (8): 2157-2160.
doi: 10.1021/ma00162a009
[8] 白卯娟, 刘岩, 肖凤艳, 等. HIPS/OMMT纳米复合材料的燃烧性能与其残余物炭层结构特征研究[J]. 高分子学报, 2012(5): 539-545.
BAI Maojuan, LIU Yan, XIAO Fengyan, et al. Combustion properties of HIPS/OMMT nanocomposites and structural characteristics of residual carbon layer[J]. Acta Polymerica Sinica, 2012 (5): 539-545.
[9] KASHIWAGI T, HARRIS R H, ZHANG X, et.al. Flame retardant mechanism of polyamide 6-clay nano-composites[J]. Polymer, 2004, 45(3): 881-891.
doi: 10.1016/j.polymer.2003.11.036
[10] PENG Hongyun, ZHANG Liping, LI Min, et al. Interfacial growth of 2D bimetallic metal-organic frameworks on MoS2 nanosheet for reinforcements of polyacrylonitrile fiber: from efficient flame-retardant fiber to recyclable photothermal materials[J]. Chemical Engineering Journal, 2020, 397: 1-12.
[11] LU Shaolin, HONG Wei, CHEN Xudong. Nano reinforcements of two-dimensional nanomaterials for flame retardant polymeric composites: an overview[J]. Advances in Polymer Technology, 2019(11):1-25.
[12] RAN Shiya, GUO Zhenghong, HAN Ligang, et al. Effect of friedel-crafts reaction on the thermal stability and flammability of high density polyethylene/brominated polystyrene/ graphene nanoplatelet composites[J]. Polymer International, 2014, 63 (10): 1835-1841.
doi: 10.1002/pi.4705
[13] HUANG Guobao, GAO Jianrong, WANG Xu, et al. How can graphene reduce the flammability of polymer nano-composites?[J]. Materials Letters, 2012 (66): 187-189.
[14] BAO Chenlu, SONG Lei, XING Weiyi, et al. Preparation of graphene by pressurized oxidation and multiplex reduction and its polymer nanocomposites by master batch-based melt blending[J]. Journal of Materials Chemistry, 2012, 22: 6088-6096.
doi: 10.1039/c2jm16203b
[15] CAI Wei, LI Zhaoxin, MU Xiaowei, et al. Barrier function of graphene for suppressing the smoke toxicity of polymer/black phosphorous nanocomposites with mechanism change[J]. Journal of Hazardous Materials, 2021. DOI:10.1016/j.jhazmat.2020.124106.
doi: 10.1016/j.jhazmat.2020.124106
[16] 王研, 胡泽旭, 周哲, 等. 石墨烯对聚苯硫醚非等温结晶行为的影响研究[J]. 合成纤维, 2019, 48(3): 12-18.
WANG Yan, HU Zexu, ZHOU Zhe, et al. Influence of graphene on non-isothermal crystallization behavior of polyphenylene sulfide[J]. Synthetic Fiber in China, 2019, 48(3): 12-18.
[17] HU Zexu, HOU Kai, GAO Jialin, et al. Enhanced photo-stability polyphenylene sulfide fiber via incorporation of multi-walled carbon nanotubes using exciton quenching[J]. Composites Part A, 2020. DOI:10.1016/j.compositesa.2019.105716.
doi: 10.1016/j.compositesa.2019.105716
[18] 胡泽旭, 陈姿晔, 相恒学, 等. 石墨烯改性聚苯硫醚纤维光稳定性及其增强机制[J]. 纺织学报, 2017, 38(11):1-8.
HU Zexu, CHEN Ziye, XIANG Hengxue, et al. The light stability of graphene modified polyphenylene sulfide fiber and its enhancement mechanism[J]. Journal of Textile Research, 2017, 38(11): 1-8.
doi: 10.1177/004051756803800101
[1] 万爱兰, 沈新燕, 王晓晓, 赵树强. 聚多巴胺修饰还原氧化石墨烯/聚吡咯导电织物的制备及其传感响应特性[J]. 纺织学报, 2023, 44(01): 156-163.
[2] 陈明星, 张威, 王新亚, 肖长发. 纳米纤维基催化材料的制备及其在环境领域中的应用研究进展[J]. 纺织学报, 2023, 44(01): 209-218.
[3] 朱晓荣, 何佳臻, 向攸慧, 王敏. 热防护服蓄热防护与放热危害双重特性的研究进展[J]. 纺织学报, 2023, 44(01): 228-237.
[4] 陈琛, 韩燚, 孙海燕, 姚诚凯, 高超. 花状氧化石墨烯原位展开共聚聚酰胺6及其功能纤维[J]. 纺织学报, 2023, 44(01): 47-55.
[5] 周文, 俞建勇, 张世超, 丁彬. 基于绿色溶剂的聚酰胺纳米纤维膜制备及其空气过滤性能[J]. 纺织学报, 2023, 44(01): 56-63.
[6] 蒲海红, 贺芃鑫, 宋柏青, 赵丁莹, 李欣峰, 张天一, 马建华. 纤维素/碳纳米管复合纤维的制备及其功能化应用[J]. 纺织学报, 2023, 44(01): 79-86.
[7] 谭林立, 秦柳, 李英儒, 邓伶俐, 谢知音, 李时东. 基于超临界二氧化碳的高效低阻聚丙烯熔喷纤维制备及其性能[J]. 纺织学报, 2023, 44(01): 87-92.
[8] 楚艳艳, 李施辰, 陈超, 刘莹莹, 黄伟韩, 张越, 陈晓钢. 柔性抗冲击纺织材料及其结构的研究进展[J]. 纺织学报, 2022, 43(12): 203-212.
[9] 张书诚, 邢剑, 徐珍珍. 基于废弃聚苯硫醚滤料的多层吸声材料制备及其性能[J]. 纺织学报, 2022, 43(12): 35-41.
[10] 李亮, 裴斐斐, 刘淑萍, 田苏杰, 许梦媛, 刘让同, 海军. 聚乳酸纳米纤维基载药敷料的制备与表征[J]. 纺织学报, 2022, 43(11): 1-8.
[11] 张长欢, 李纤纤, 张力冉, 李德阳, 李念武, 吴红艳. 磷酸铁锂/炭黑/碳纳米纤维柔性正极的制备及其性能[J]. 纺织学报, 2022, 43(11): 16-21.
[12] 王洪杰, 胡忠文, 王赫, 凤权, 林童. 单向导湿纺织品及其应用的研究进展[J]. 纺织学报, 2022, 43(11): 195-202.
[13] 姚莹, 赵为陶, 张德锁, 林红, 陈宇岳, 魏红. 超支化季铵盐诱导制备树枝状纳米纤维膜及其性能[J]. 纺织学报, 2022, 43(10): 1-9.
[14] 俞杨销, 李枫, 王煜煜, 王善龙, 王建南, 许建梅. 聚吡咯/丝素导电纳米纤维膜的制备及其性能[J]. 纺织学报, 2022, 43(10): 16-23.
[15] 王双双, 季志浩, 盛国栋, 金恩琪. 零价铁/氧化石墨烯复合吸附剂对染料和重金属的吸附性能[J]. 纺织学报, 2022, 43(09): 156-166.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!