纺织学报 ›› 2023, Vol. 44 ›› Issue (12): 181-188.doi: 10.13475/j.fzxb.20211000401

• 机械与器材 • 上一篇    下一篇

主喷嘴与高速异形孔辅助喷嘴引纬合成流场特性

肖世超1, 沈敏1,2(), 方敬兵1, 王真1, 余联庆1   

  1. 1.武汉纺织大学 机械工程与自动化学院, 湖北 武汉 430200
    2.武汉纺织大学,湖北省数字化纺织装备重点实验室, 湖北 武汉 430200
  • 收稿日期:2022-10-08 修回日期:2023-07-01 出版日期:2023-12-15 发布日期:2024-01-22
  • 通讯作者: 沈敏(1978—),女,副教授,博士。主要研究方向为纺织机械动力学。E-mail:min_shen18@163.com
  • 作者简介:肖世超(1997—),男,硕士生。主要研究方向为喷气织机辅助喷嘴优化。
  • 基金资助:
    国家自然科学基金项目(51505344);国家自然科学基金项目(11872048);湖北省自然科学基金项目(2014CFB766);湖北省高等学校优秀中青年科技创新团队计划项目(T2022015);湖北省数字化纺织装备重点实验室开放课题资助项目(2020001)

Characteristics of weft insertion synthetic airflow from main nozzle and high-speed special-shaped auxiliary nozzles

XIAO Shichao1, SHEN Min1,2(), FANG Jingbing1, WANG Zhen1, YU Lianqing1   

  1. 1. School of Mechanical Engineering and Automation, Wuhan Textile University, Wuhan, Hubei 430200, China
    2. Hubei Key Laboratory of Digital Textile Equipment, Wuhan Textile University, Wuhan, Hubei 430200, China
  • Received:2022-10-08 Revised:2023-07-01 Published:2023-12-15 Online:2024-01-22

摘要:

为解决单圆孔辅助喷嘴出口速度偏低,气流集束性较差及耗气量过高的问题,通过设计新型异形孔辅助喷嘴,揭示在同一工况下辅助喷嘴的喷孔形状对异形筘道内合成气流分布的影响规律。建立了主喷嘴射流与一组辅喷射流叠加的三维合成流场模型,基于雷诺时均方程封闭k-ε双方程湍流模型数值求解了异型筘槽内合成流场轴向速度和径向速度云图,通过实验装置测量了筘槽内合成气流平均速度,验证了数值结果的正确性。讨论了单圆孔,Y1,Y2和Y3号辅助喷嘴的出口形状对异形筘道内合成气流的轴向速度、引纬稳定性及耗气量的影响规律。结果表明:对比单圆孔辅助喷嘴,Y2号异形孔辅助喷嘴轴向气流速度可提高12%,耗气量降低了6%,引纬稳定性比单圆孔辅助喷嘴有所改善,综合性能优于单圆孔辅助喷嘴。

关键词: 引纬合成气流, 异形筘, 异形孔辅助喷嘴, 引纬稳定性, 耗气量, 喷气织机

Abstract:

Objective The auxiliary nozzles are key components in air jet looms. While the single circular auxiliary nozzles have problems of low speed, poor air concentration and high air consumption, this research aims to design a new type of auxiliary nozzle with special-shaped hole and to study the influence of the structural parameters of auxiliary nozzles on the synthetic airflow in the profiled reed. A three-dimensional(3-D) synthetic airflow field consisting of a main jet and auxiliary nozzle jets was numerically simulated based on the Reynolds time-averaged equations (RANS) and eddy viscosity turbulent model.
Method 3-D model of synthetic airflow field of different Y1, Y2 and Y3 type of auxiliary nozzles were established with Solidworks before the 3-D synthetic airflow model was meshed with professional ICEM software and the boundary conditions were set in the CFD software Fluent. The numerical simulation on the synthetic airflow model was accomplished based on the RANS equations. The numerical simulation results were validated by the experimental results. Thereafter, the comprehensive comparison of synthetic airflow characteristics and air consumption were investigated for single round-hole and Y1, Y2 and Y3 type auxiliary nozzle with different structure parameters under same gas pressure.
Results The simulation results were in agreements with the experimental test results regarding the synthetic airflow velocity trend. When the airflow from an auxiliary nozzle jet was injected into the profiled reed and merged with the main jet, the synthetic airflow experienced attenuation. The Y2 type relay nozzle has the minimal attenuation, and the airflow speed was 8 m/s higher than that of the auxiliary nozzle with a single circular hole structure. The inject angle of auxiliary nozzle was found to have a significant impact on the velocity of the synthetic airflow. The inject angle of the Y2 type auxiliary nozzle varied between 4°and 7°, while the speed deviation of the Y2 relay nozzle was 13 m/s. The outlet shape of auxiliary nozzle was also found to have influence on the turbulence distribution of the synthetic airflow in the profiled reed. The outlet shape of auxiliary nozzle demonstrated effects on the velocity and direction of the synthetic airflow. The jet core speed of the Y2 auxiliary nozzle jet was 320 m/s and the jet core velocity area is the longest, better than single circular hole auxiliary nozzle. On the other hand, the single round-hole jet core area is the smallest and spreads quickly. The weft thread was pulled forward by the high-velocity airflow in the profile reed. The outlet shape had an influence on the weft insertion stability. The radial velocity of synthetic airflow was measured at three cross sections of 5 mm, 10 mm and 15 mm from the first auxiliary nozzle outlet, respectively. The radial velocity amplitude and the equivalent circle radius are largest for the Y2 type auxiliary nozzle. Statistics on the mass flow rate at the outlet related to the gas consumption of three types of auxiliary nozzles.
Conclusion Based on the above simulation analysis, some useful results are obtained. Compared the single round hole auxiliary nozzle with the Y2 type auxiliary nozzle, the average velocity increased by 6% and the maximum velocity increased by 12%. The injection angle of auxiliary nozzle is a sensitive factor that affects the axial velocity of synthetic airflow in the profiled reed. A small change in the injection angle will have a significant impact on the velocity of synthetic air flow in the profiled reed. Among them, the best injection angle of Y2 auxiliary injection is 4°. The maximum speed of the potential core of the Y2 type auxiliary jet flow reaches 324 m/s, and the potential core area is the longest. The Y2 auxiliary jet can converge with the main jet at a higher speed. At the section 10 mm away from the auxiliary jet outlet, the radial velocity of Y2 type auxiliary jet flow exceeds 80 m/s, and the equivalent circle radius is significantly greater than that of single circular-hole auxiliary nozzle. It can be seen that the radial velocity attenuation is the slowest and the stability of weft insertion is the best with the Y2 type auxiliary nozzle.

Key words: weft insertion synthetic airflow, profiled reed, special-shaped hole auxiliary nozzle, weft insertion stability, gas consumption, air jet loom

中图分类号: 

  • TS103.3

图1

单圆孔辅助喷嘴结构参数 注:图中数值单位为mm。"

图2

增材3D打印制作的Y1,Y2和Y3号辅助喷嘴出口截面参数 注:单位为mm。"

图3

主喷嘴与辅助喷嘴射流汇入异形筘内的三维合成流场模型"

图4

异形筘道内三维合成流场网格模型"

图5

主辅喷嘴在异形筘道内合成气流速度测试原理图"

图6

异形筘道内合成气流平均速度测量装置"

表1

4种辅助喷嘴同在A测点位置的气流速度"

喷嘴类型 平均速度/(m·s-1) 标准差/(m·s-1)
单圆孔 67.8 0.336
Y1号 71.5 0.320
Y2号 76.0 0.300
Y3号 66.9 0.314

图7

实验与数值模拟的异形筘道内合成气流沿x轴方向速度曲线"

图8

Y2号辅助喷嘴不同喷射角的合成气流沿x轴速度曲线"

图9

主喷射流分别与单圆孔、Y1、Y2和Y3号辅喷射流汇入异形筘内合成气流速度矢量图"

图10

主喷射流分别与单圆孔,Y1、Y2及Y3号辅喷的合成流场速度云图"

图11

距离第1个辅喷出口不同位置截面的径向速度云图"

表2

不同出口形状的辅助喷嘴耗气量"

辅助喷嘴类型 耗气量/(m3·h-1) 平均速度/(m·s-1)
单圆孔 4.18 67.8
Y1号异形孔 3.94 71.5
Y2号异形孔 3.92 76.0
Y3号异形孔 4.04 66.9
[1] 杨国仲, 沈丹峰, 常革联, 等. 喷气织机异形筘结构参数对引纬气流场的影响[J]. 西安工程大学学报, 2020, 34(2): 85-90.
YANG Guozhong, SHEN Danfeng, CHANG Gelian, et al. Comprehensive performance of auxiliary nozzle in air-jet loom based on fluent[J]. Journal of Xi'an Polytechnic University, 2020, 34(2): 85-90.
[2] MÜNKEL A, GRIES T,谭宇豪, 喷气织机的高效节能引纬系统[J]. 国际纺织导报, 2020, 48(12): 22-24.
MÜNKEL A, GRIES T, TAN Yuhao. Energy-efficiency weft insertion system for air-jet weaving machines[J]. Melliand China, 2020, 48(12): 22-24.
[3] 张敏, 王鸿博, 高卫东, 等. 喷气织机辅助喷嘴流场特性与耗气量分析[J], 纺织学报, 2016, 37(12): 123-128.
ZHANG Min, WANG Hongbo, GAO Weidong, et al. Analysis on weft insertion flow field and gas consumption of auxiliary nozzle in air-jet loom[J]. Journal of Textile Research, 2016, 37(12): 123-128.
[4] KIM J H, TOSHIAKI S, KIM H D. Numerical study of sub-nozzle flows for the weft transmission in an air jet loom[J]. Procedia Engineering, 2015, 105: 364-269.
[5] 陈巧兰, 王鸿博, 高卫东, 等. 喷气织机单圆孔辅助喷嘴结构优化[J]. 纺织学报, 2016, 37(1): 142-146.
CHEN Qiaolan, WANG Hongbo, GAO Weidong, et al. Structure optimization of single circular hole auxiliary nozzle in air-jet loom[J]. Journal of Textile Research, 2016, 37(1): 142-146.
[6] 陈永当, 程云飞, 殷俊清, 等. 喷孔锥度对喷气织机辅助喷嘴喷射性能的影响[J]. 轻工机械, 2020, 38(5): 6-12.
CHEN Yongdang, CHENG Yunfei, YIN Junqing, et al. Influence of nozzle taper on comprehensive performance of air jet loom auxiliary nozzle[J]. Light Industry Machinery, 2020, 38(5): 6-12.
[7] ADAMEK K, KAREL P, KOLAR J, et al. Relay nozzles and weaving reed[J]. International Journal of Mechanical Engineering and Applications, 2015, 3(1): 13-21.
[8] 祝章琛, 黄福荣, 周纪勇, 等. 喷气织机引纬筘槽内气流状态的测试分析[J]. 纺织学报, 2010, 31(6): 121-124.
ZHU Zhangchen, HUANG Furong, ZHOU Jiyong, et al. Test and analysis on airflow state in reed groove of air jet looms[J]. Journal of Textile Research, 2010, 31(6): 121-124.
[9] 钱怡, 薛文良. 辅助喷嘴流场可叠加性的数值模拟[J]. 上海纺织科技, 2017, 45(9): 20-23.
QIAN Yi, XUE Wenliang. Numerical simulation and experimental verification of the repetition of relay nozzle flow field[J]. Shanghai Textile Science & Technology, 2017, 45(9): 20-23.
[10] CUI J Y, JIN Y Z, HU X D, et al. Characteristics of intersecting airflows in the narrow flow channel[J]. The Journal of The Textile Institute, 2018, 109(4): 517-523.
[11] JIN Y Z, HU X D, ZHU L H, et al. Study on airflow characteristics in the semi-closed irregular narrow flow channel[J]. Journal of Thermal Science, 2016, 25(2): 123-129.
[12] 陆庆, 冯志华, 张荣, 等. 主辅喷嘴供气压力对筘槽内引纬气流速度的影响[J]. 科学技术与工程, 2017, 17(7): 95-110.
LU Qing, FENG Zhihua, ZHANG Rong, et al. Influence of air supply pressure of the main and auxiliary nozzles on the air flow velocity in the shed triangle of weft insertion[J]. Science Technology and Engineering, 2017, 17(7): 95-110.
[13] 李斯湖, 沈敏, 白聪, 等. 喷气织机辅助喷嘴结构参数对流场特性的影响[J]. 纺织学报, 2019, 40(11): 161-167.
LI Sihu, SHEN Min, BAI Cong, et al. Influence of structure parameter of auxiliary nozzle in air-jet loom on characteristics of flow field[J]. Journal of Textile Research, 2019, 40(11): 161-167.
[14] 孔双祥, 胥光申, 巨孔亮. 基于Fluent喷气织机不同单孔辅助喷嘴的结构优化[J]. 西安工程大学学报, 2017, 31(1): 82-87.
KONG Shuangxiang, XU Guangshen, JU Kongliang. Structure optimization of different single hole auxiliary nozzle in air-jer llom based on Fluent[J]. Journal of Xi'an Polytechnic University, 2017, 31(1): 82-87.
[15] 胥光申, 孔双祥, 刘洋, 等. 基于Fluent的喷气织机辅助喷嘴综合性能[J]. 纺织学报, 2018, 39(8): 124-129.
XU Guangshen, KONG Shuangxiang, LIU Yang, et al. Comprehensive performance of auxiliary nozzle in air-jet loom based on Fluent[J]. Journal of Textile Research, 2018, 39(8): 124-129.
[16] 陈永当, 程云飞, 殷俊清, 等. 喷气织机异形孔辅助喷嘴的结构及其喷射性能[J]. 西安工程大学学报, 2020, 34(1): 8-13.
CHEN Yongdang, CHENG Yunfei, YIN Junqing, et al. Comprehensive performance of auxiliary nozzle in air-jet loom based on Fluent[J]. Journal of Xi'an Polytechnic University, 2020, 34(1): 8-13.
[1] 樊百林, 张昌睿, 郭佳华, 黄钢汉, 尉国梁. 基于Flow Simulation的喷气织机辅助喷嘴喷孔结构优化[J]. 纺织学报, 2023, 44(06): 200-206.
[2] 周浩邦, 沈敏, 余联庆, 肖世超. 辅助喷嘴结构对喷气织机异形筘内合成流场特征的影响[J]. 纺织学报, 2021, 42(11): 166-172.
[3] 李斯湖, 沈敏, 白聪, 陈亮. 喷气织机辅助喷嘴结构参数对流场特性的影响[J]. 纺织学报, 2019, 40(11): 161-167.
[4] 广少博, 金玉珍, 祝晓晨. 喷气织机延伸喷嘴内气流场特性分析[J]. 纺织学报, 2019, 40(04): 135-139.
[5] 胥光申 孔双祥 刘洋 罗时杰. 基于Fluent的喷气织机辅助喷嘴综合性能[J]. 纺织学报, 2018, 39(08): 124-129.
[6] 颜苏芊 王力平. 喷气织机中压缩空气的泄漏评估及其修复优化[J]. 纺织学报, 2018, 39(04): 130-136.
[7] 韩要宾 张杰 高卫东 潘如如 张宁. 基于生产实践的喷气织机主喷嘴气压优选[J]. 纺织学报, 2017, 38(01): 126-131.
[8] 张敏 王鸿博 高卫东 陈巧兰. 喷气织机辅助喷嘴流场特性与耗气量分析[J]. 纺织学报, 2016, 37(12): 123-128.
[9] 张亮 冯志华 张晓飞 刘帅. 喷气织机辅助喷嘴与异形筘结构参数对流场的影响[J]. 纺织学报, 2016, 37(09): 129-133.
[10] 张敏 王鸿博 高卫东 卢雨正 . 喷气织机车速对织物纬向物理力学性能的影响[J]. 纺织学报, 2016, 37(08): 41-46.
[11] 金玉珍 胡小冬 林培锋 胡旭东. 喷气织机打纬机构及墙板的振动特性[J]. 纺织学报, 2016, 37(07): 131-136.
[12] 张亮 冯志华 刘帅 陈亮 张晓飞. 喷气织机辅助喷嘴喷孔结构优化设计[J]. 纺织学报, 2016, 37(06): 112-117.
[13] 董腾中 冯志华 王卫华 陈亮 刘帅. 喷气织机主喷嘴引纬流场数值模拟与实验验证[J]. 纺织学报, 2014, 35(5): 126-0.
[14] 徐存强 冯志华 董腾中 王卫华 卞亚东. 气流引纬主喷嘴内气流速度与纬纱间摩擦因数的关系[J]. 纺织学报, 2013, 34(11): 147-0.
[15] 谭保辉, 冯志华, 刘丁丁, 唐银萍. 基于CFD的喷气织机辅助喷嘴流场分析[J]. 纺织学报, 2012, 33(7): 123-128.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!