纺织学报 ›› 2023, Vol. 44 ›› Issue (02): 11-18.doi: 10.13475/j.fzxb.20211001008

• 纤维材料 • 上一篇    下一篇

高速纺丝工艺下Lyocell纤维结构对其原纤化的影响

李婷1,2,3, 李文瑞3,4, 张晨曦3, 迟克栋3, 张明明3, 刘海辉4, 黄庆1,2,3()   

  1. 1.东华大学 材料科学与工程学院, 上海 201620
    2.东华大学 纤维材料改性国家重点实验室, 上海 201620
    3.中国纺织科学研究院有限公司 生物源纤维制造技术国家重点实验室, 北京 100025
    4.天津工业大学 材料科学与工程学院, 天津 300387
  • 收稿日期:2021-10-08 修回日期:2022-05-11 出版日期:2023-02-15 发布日期:2023-03-07
  • 通讯作者: 黄庆(1962—),男,正高级工程师,博士。研究方向为生物基纤维、纺织及医用材料。E-mail:huangqing@cta.gt.cn。
  • 作者简介:李婷(1989—),女,博士生。主要研究方向为新溶剂法纤维素纤维。
  • 基金资助:
    国家重点研发计划项目(2017YFB0309500)

Effect of Lyocell fiber structure on its fibrillation at high speed spinning process

LI Ting1,2,3, LI Wenrui3,4, ZHANG Chenxi3, CHI Kedong3, ZHANG Mingming3, LIU Haihui4, HUANG Qing1,2,3()   

  1. 1. College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
    2. State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai 201620, China
    3. State Key Laboratory of Biobased Fiber Manufacturing Technology, China Textile Academy, Beijing 100025, China
    4. School of Material Science and Engineering, Tiangong University, Tianjin 300387, China
  • Received:2021-10-08 Revised:2022-05-11 Published:2023-02-15 Online:2023-03-07

摘要:

为探索高纺速下Lyocell纤维凝聚态结构与原纤化的关系,在不同条件下进行高速纺丝,从结构出发调控Lyocell纤维原纤化。借助X射线衍射仪、湿摩擦测试仪及偏光显微镜等,探究了凝固浴N-甲基吗啉-N-氧化物(NMMO) 质量分数、纺丝速度及吹风风速对Lyocell纤维凝聚态结构和原纤化的影响。结果表明:一定程度提高凝固浴NMMO质量分数可使Lyocell纤维凝聚态结构更完善,提高纺丝速度可促进Lyocell纤维无定形区取向,提高吹风风速会促进其横向晶粒尺寸增长;凝聚态结构直接影响Lyocell纤维原纤化程度,结晶取向度低、晶粒尺寸小的Lyocell纤维抗原纤化更好,因此,在一定范围内降低凝固浴NMMO质量分数、纺速、吹风风速均可降低纤维原纤化程度;其中,调整凝固浴NMMO质量分数可同时改变全取向度(尤其是非晶取向)和横向晶粒尺寸,更易于高纺速下调控Lyocell纤维原纤化性能。

关键词: 高纺速, 凝聚态结构, 原纤化, Lyocell纤维, 结构调控

Abstract:

Objective The research on the relationship between the condensed structure and the degree of fibrillation of Lyocell fiber at a higher spinning speed is relatively scarce. Selecting appropriate preparation conditions to change the condensed structure of fiber and regulate the degree of fibrillation can ease the main problems that restrict the industrial promotion and scale applications of Lyocell fiber. This research studied the influence of different preparation conditions on the condensed structure of Lyocell fiber and the degree of fibrillation, further established the relationship, which was then used to control the degree of fibrillation at high spinning speed.
Method In order to explore the relationship between the condensed structure and the degree of fibrillation of Lyocell fiber at high spinning speed, the fibers were spun with different N-methylmorpholine-N-oxide (NMMO) mass fractions, spinning speeds and blowing speeds. The degree of fibrillation was regulated by adjusting the structure. Using X-ray diffraction, wet friction tester and polarized microscope, the effects of NMMO concentration, spinning speed and blowing speed on the condensed structure and the degree of fibrillation were explored.
Results The condensed structure and fibrillation behavior of the fibers prepared under different conditions are obviously different. Increasing the concentration of the NMMO to a certain extent optimizes the fiber structure, leading to significant increase in the degree of orientation and transverse crystallite size as shown in Tab. 1, and in the degree of fibrillation of the fiber as illustrated in Fig. 2-3. The fiber with low crystal orientation and small crystal size has better antigen fibrillation properties. The coagulation bath with lower NMMO mass fraction is more suitable to prepare low fibrillation Lyocell fiber at high spinning speed. As the spinning speed increases, the crystallinity and the grain size of the fiber increases slightly as suggested in Tab. 2. However, the amorphous region is further oriented and the degree of fibrillation also increases(Fig. 4 and 5). To a certain extent, reducing the spinning speed can reduce the fibrillation of the fiber. Adjusting the air blowing speed has a significant impact on the structure of fiber as shown in Fig. 6, especially on the transverse grain size as shown in Tab. 3, which can control the degree of fibrillation as Fig. 7 reveals. In a certain range, the lower the blowing speed, the less the crystal orientation and the smaller the grain size, the more conducive to reducing the fiber fibrillation. Too low the blowing speed affects the forming of the fiber and the spinning stability.
Conclusion The condensed structure of Lyocell fiber directly affects the degree of fibrillation. The antigen fibrillation properties of the fiber prepared at high spinning speed is better in having low crystallization, low orientation and small crystallite size. To a certain extent, reducing the concentration of NMMO, spinning speed and blowing speed can reduce the degree of fibrillation. By comprehensively changing the degree of orienta-tion (especially the orientation of amorphous region) and the transverse grain size, the regulation of fibrillation is more obvious. Adjusting the concentration of NMMO is an easier way, among the above factors, to control the fibrillation behavior at high spinning speed. The Lyocell fiber prepared under mild spinning conditions demonstrates better antigenic fibrillation properties.

Key words: high spinning speed, condensed structure, fibrillation, Lyocell fiber, structure regulation

中图分类号: 

  • TS109.9

图1

不同NMMO质量分数下Lyocell纤维的XRD衍射图谱"

表1

不同NMMO质量分数下Lyocell纤维的结晶度、取向参数和晶粒尺寸"

凝固浴
NMMO质
量分数/%
α/% Δn fc L(101)/nm L(002)/nm
10 61.9 0.061 0.869 2.04 2.09
14 62.3 0.062 0.882 2.28 2.10
18 64.7 0.067 0.897 2.41 2.08
22 67.1 0.072 0.903 2.53 2.11
26 68.6 0.078 0.919 2.59 2.10

图2

不同NMMO质量分数下Lyocell纤维样品表面微纤照片(×100)"

图3

Lyocell纤维湿摩擦时间随NMMO 质量分数的变化"

图4

不同纺丝速度下结晶参数变化"

表2

不同纺丝速度下Lyocell纤维主要晶面的晶粒尺寸"

纺丝速度/(m·min-1) L(101)/nm L(002)/nm
150 2.0 2.3
200 2.1 2.2
250 2.1 2.2
300 2.1 2.3
350 2.1 2.3

图5

Lyocell纤维湿摩擦时间随纺丝速度的变化"

图6

不同吹风风速下Lyocell纤维的全取向度和结晶度"

表3

不同吹风风速下Lyocell纤维主要晶面的晶粒尺寸"

吹风风速/(m·s-1) L(101)/nm L(002)/nm
4 2.0 2.3
5 2.3 2.4
6 2.5 2.3
7 2.5 2.3
8 2.6 2.2

图7

Lyocell纤维湿摩擦时间随吹风风速的变化"

[1] 王乐军, 刘怡宁, 房迪, 等. Lyocell纤维的国内外研发现状与发展方向[J]. 纺织学报, 2017, 38(4): 164-170.
WANG Lejun, LIU Yining, FANG Di, et al. Research and development direction of fiber at home and abroad[J]. Journal of Textile Research, 2017, 38(4): 164-170.
[2] AAKASH Sharma, SHAILESH Nagarkar, SHIRISH Thakre, et al. Structure-property relations in regenerated cellulose fibers: comparison of fibers manufactured using viscose and Lyocell processes[J]. Springer Netherlands, 2019, 26(6): 3655-3669.
[3] 元伟, 王铁晗, 张玉梅, 等. Lyocell纤维的原纤化现象及测试方法综述[J]. 人造纤维, 2019, 49(6): 11-15.
YUAN Wei, WANG Tiehan, ZHANG Yumei, et al. Review on fibrillation phenomenon and test methods of Lyocell fiber[J]. Artificial Fibre, 2019, 49(6): 11-15.
[4] 黄伟, 程春祖, 张嘉煜, 等. Lyocell纤维的低原纤化控制方法研究进展[J]. 纤维素科学与技术, 2021, 29(2): 78-84.
HUANG Wei, CHENG Chunzu, ZHANG Jiayu, et al. Research progress of low fibrillation control methods of Lyocell fiber[J]. Journal of Cellulose Science and Technology, 2021, 29(2): 78-84.
[5] TATJANA Kreze, SIMONA Strnad, KARIN Stana-Kleinschek, et al. Influence of aqueous medium on mechanical properties of conventional and new environmentally friendly regenerated cellulose fibers[J]. Materials Research Innovations, 2001, 4(2/3): 107-114.
doi: 10.1007/s100190000089
[6] LIU R G, HU X C. Precipitation kinetics of cellulose in the Lyocell spinning process[J]. Industrial & Engineering Chemistry Research, 2006, 45(8): 2840-2844.
doi: 10.1021/ie050991v
[7] ZHANG H R R, LIU X Y, LI D S, et al. Effect of oligosaccharide accumulated in the coagulation bath on the Lyocell fiber process during industrial produc-tion[J]. Journal of Applied Polymer Science, 2009, 113(1): 150-156.
doi: 10.1002/app.v113:1
[8] FINK H P, WEIGEL P, PURZ H J, et al. Structure formation of regenerated cellulose materials from NMMO-solutions[J]. Progress in Polymer Science, 2001, 26(9): 1473-1524.
doi: 10.1016/S0079-6700(01)00025-9
[9] MORTIMER S A, PEGUY A A. Influence of air-gap conditions on the structure formation of Lyocell fibers[J]. Journal of Applied Polymer Science, 1996, 60(10): 1747-1756.
doi: 10.1002/(SICI)1097-4628(19960606)60:10<>1.0.CO;2-Q
[10] 邵惠丽, 段菊兰, 胡学超, 等. 凝固浴条件对Lyocell纤维结晶结构的影响[J]. 合成纤维, 2000, 29(3): 3-5.
SHAO Huili, DUAN Julan, HU Xuechao, et al. Effect of coagulation bath conditions on crystal structure of Lyocell fiber[J]. Synthetic Fiber in China, 2000, 29(3): 3-5.
[11] 赵地顺, 付林林, 张娟, 等. 共溶剂存在下N-烯丙基吡啶氯盐离子液体对纤维素的溶解性能研究[J]. 高分子学报, 2012 (9): 937-942.
ZHAO Dishun, FU Linlin, ZHANG Juan, et al. Study on the dissolution of cellulose in N-allylpyridinium chloride ionic liquid and co-solvent composites[J]. Acta Polymerica Sinica, 2012(9): 937-942.
[12] NICOLAI M. Textile crosslinking reactions to reduce the fibrillation tendency of Lyocell fibers[J]. Textile Research Journal, 1996, 66(9):575-580.
doi: 10.1177/004051759606600905
[13] 荀红利, 高文战, 郑玉成, 等. 一种纤维湿摩擦测试设备:201820923200.8[P]. 2019-02-01.
XUN Hongli, GAO Wenzhan, ZHENG Yucheng, et al. Fiber wet friction test equipment: 201820923200.8[P]. 2019-02-01.
[1] 孔维庆, 胡述锋, 俞森龙, 周哲, 朱美芳. 木质纤维素功能材料的研究进展[J]. 纺织学报, 2022, 43(04): 1-9.
[2] 乔燕莎, 毛迎, 徐丹瑶, 李彦, 李绍杰, 王璐, 唐健雄. 用于应对疝修补术后并发症的经编补片研究进展[J]. 纺织学报, 2022, 43(03): 1-7.
[3] 黄伟, 张嘉煜, 庄小雄, 张东, 李婷, 程春祖, 徐纪刚. 油剂处理工艺对Lyocell纤维性能的影响[J]. 纺织学报, 2022, 43(02): 105-109.
[4] 靳宏, 张玥, 张玉梅, 王华平. 基于分子模拟预判Lyocell纤维原液着色体系中溶剂的稳定性[J]. 纺织学报, 2021, 42(10): 1-7.
[5] 潘忆乐, 钱丽颖, 徐纪刚, 何北海, 李军荣. Lyocell纤维纺丝浆粕溶解性的影响因素分析[J]. 纺织学报, 2021, 42(10): 27-33.
[6] 林生根, 刘晓辉, 苏晓伟, 何聚, 任元林. 新型植酸基阻燃剂改性Lyocell纤维与织物的制备及其性能[J]. 纺织学报, 2021, 42(07): 25-30.
[7] 黄伟, 程春祖, 张嘉煜, 张晨曦, 程敏, 徐纪刚, 刘云崇. 高原纤化Lyocell纤维的制备及其性能[J]. 纺织学报, 2021, 42(06): 41-45.
[8] 元伟, 姚勇波, 张玉梅, 王华平. 制备Lyocell纤维用纤维素浆粕的碱性酶处理工艺[J]. 纺织学报, 2020, 41(07): 1-8.
[9] 王乐军 刘怡宁 房迪 李增俊 吕佳滨. Lyocell纤维的国内外研发现状与发展方向[J]. 纺织学报, 2017, 38(04): 164-170.
[10] 孙伟泽 张丽平 李敏 杜长森 王春霞 付少海. 炭黑/Lyocell纤维素膜的制备及其性能[J]. 纺织学报, 2017, 38(03): 28-32.
[11] 杨棹航 关晓宇 钱晓明. 合成纤维在湿法非织造技术及其应用[J]. 纺织学报, 2016, 37(06): 163-170.
[12] 阙亦云 李兆敏 朱姝 余木火 赵改平. 介入医疗器械用聚醚嵌段酰胺中空纤维的凝聚态结构与性能[J]. 纺织学报, 2016, 37(01): 1-5.
[13] 李晓俊 朱庆松 孙玉山. 两种离子液体溶剂干湿纺纤维素纤维的力学性能及孔结构研究[J]. 纺织学报, 2015, 36(02): 1-6.
[14] 王莉;姚金波. 甲酸处理后精纺毛织物耐磨性能及其纤维断裂端形态的变化[J]. 纺织学报, 2010, 31(7): 43-45.
[15] 王君;王荣武;吴雄英;谢火胜. 不同纺织品中Lyocell纤维纵向图像特征差异[J]. 纺织学报, 2010, 31(5): 19-23.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 【分类号】:Z【DOI】:cnki:ISSN:0-.0.00-0-0【正文快照】:  一;纺 纱模糊控制纺纱张力的研究周光茜等 ( - )………………原棉含杂与除杂效果评价方法的研究于永玲 ( - )……网络长丝纱免浆免捻功能的结构表征方法李栋高等 ( - )……………. 2003年纺织学报第二十四卷总目次[J]. 纺织学报, 2003, 24(06): 109 -620 .
[2] 朱敏;周翔. 准分子激光对聚合物材料的表面改性处理[J]. 纺织学报, 2004, 25(01): 1 -9 .
[3] 张治国;尹红;陈志荣. 纤维前处理用精练助剂研究进展[J]. 纺织学报, 2004, 25(02): 105 -107 .
[4] 秦元春. 纺织工业发展方向初探[J]. 纺织学报, 2004, 25(02): 108 -110 .
[5] 冯宪. 漫谈未来服装的发展方向[J]. 纺织学报, 2004, 25(02): 119 -120 .
[6] 潘旭伟;顾新建;韩永生;程耀东. 面向协同的服装供应链快速反应机制研究[J]. 纺织学报, 2006, 27(1): 54 -57 .
[7] 黄小华;沈鼎权. 菠萝叶纤维脱胶工艺及染色性能[J]. 纺织学报, 2006, 27(1): 75 -77 .
[8] 钟智丽;王训该. 纳米纤维的应用前景[J]. 纺织学报, 2006, 27(1): 107 -110 .
[9] 万振凯;李静东. 三维编织复合材料压缩损伤声发射特性分析[J]. 纺织学报, 2006, 27(2): 20 -24 .
[10] 包晓敏;汪亚明. 基于最小风险贝叶斯决策的织物图像分割[J]. 纺织学报, 2006, 27(2): 33 -36 .