纺织学报 ›› 2022, Vol. 43 ›› Issue (12): 109-117.doi: 10.13475/j.fzxb.20211001709

• 染整与化学品 • 上一篇    下一篇

阳离子改性阻燃涤纶织物的制备及其性能

张楚丹1, 王锐1,2, 王文庆1,2(), 刘燕燕1, 陈睿1   

  1. 1.北京服装学院 材料设计与工程学院, 北京 100029
    2.北京服装学院 服装材料研究开发与评价北京市重点实验室, 北京 100029
  • 收稿日期:2021-10-11 修回日期:2022-01-04 出版日期:2022-12-15 发布日期:2023-01-06
  • 通讯作者: 王文庆
  • 作者简介:张楚丹(1997—),男,硕士生。主要研究方向为新型可控聚合技术。
  • 基金资助:
    北京服装学院校内人才项目(BIFTXJ201905);北京市科技计划一般项目(KM202010012004);北京学者项目(RCQJ20303);国家自然科学基金青年基金项目(51703115)

Synthesis and properties of cationic modified flame retardant polyester fabrics

ZHANG Chudan1, WANG Rui1,2, WANG Wenqing1,2(), LIU Yanyan1, CHEN Rui1   

  1. 1. School of Materials Design & Engineering, Beijing Institute of Fashion Technology, Beijing 100029, China
    2. Beijing Key Laboratory of Clothing Materials R & D and Assessment, Beijing Institute of Fashion Technology, Beijing 100029, China
  • Received:2021-10-11 Revised:2022-01-04 Published:2022-12-15 Online:2023-01-06
  • Contact: WANG Wenqing

摘要:

为提高阻燃涤纶织物的吸湿、染色和抗菌等性能,以阻燃涤纶织物(FRPET)为基体,利用多巴胺化学辅助的表面引发原子转移自由基聚合(SI-ATRP)技术分别在织物表面接枝不同分子质量的聚(2-(甲基丙烯酰氧基)乙基)二甲基-(3-磺丙基)氢氧化铵(PSBMA)、聚(2-(甲基丙烯酰氧基)乙基)三甲基氯化铵(PMTAC)以及嵌段聚合物PSBMA-b-PMTAC。分别对其表面形貌、吸水、透湿、透气、染色、抗菌和阻燃性能进行表征与测试,研究阻燃涤纶织物改性前后阻燃、透湿、抗菌和染色性能的变化。结果表明:嵌段聚合物PSBMA-b-PMTAC改性的阻燃涤纶织物较原涤纶织物阻燃性能有所提高,热释放速率峰值降低60.7%;改性涤纶织物较原始织物吸水性提高,达到机织类吸湿产品标准;嵌段改性涤纶织物实现了阳离子改性的同时对大肠杆菌的抑菌率提高27%,显示出一定的抗菌性能。

关键词: 阻燃涤纶织物, 表面引发原子转移自由基聚合, 阳离子改性, 吸湿, 抗菌, 功能纺织品

Abstract:

In order to improve the moisture absorption, dyeing and antibacterial properties of flame retardant polyester fabrics, polymer coatings with different molecular weights, including poly (2-(methacryloyloxy)ethyl) dimethyl- (3-sulfopropyl)ammonium hydroxide(PSBMA), poly (2-(methacryloyloxy)ethyl) trimethylammonium chloride solution(PMTAC) and their block copolymer PSBMA-b-PMTAC, were grafted separately on the surface of flame retardant polyethylene terephthalate (FRPET) fabrics via polydopamine mediated surface initiated atom transfer radical polymerization (SI-ATRP) technology. The surface morphology, water absorption, moisture permeability, air permeability, dyeing, bacteriostatic and flame retardant properties of these surface modified FRPET fabrics were characterized and tested to study the changes of flame retardancy, moisture permeability, bacteriostatic and dyeing properties of FRPET after surface modification. The results indicated that the peak heat release rate of block copolymer PSBMA-b-PMTAC modified FRPET fabrics reduced 60.7% comparing to that of FRPET. Compared with pristine FRPET, the modified polyester fabric showed higher water absorption and satisfied the standard of woven hygroscopic products. In addition, the modified fabrics with cationic dyeing possess certain bacteriostatic performance and the bacteriostatic rate of Escherichia coli was increased by 27%.

Key words: flame retardant polyester fabric, surface initiated atom transfer radical polymerization, cationic modification, moisture absorption, bacteriostasis, functional textile

中图分类号: 

  • TQ342

图1

基于多巴胺化学和SI-ATRP的FRPET-g-PDA-g-PSBMA-b-PMTAC合成路线示意图"

图2

不同改性阻燃涤纶织物的SEM照片"

图3

阻燃涤纶织物改性前后SEM-EDS图"

图4

FRPET 各改性步骤样品的XPS曲线"

表1

FRPET 各改性步骤样品的XPS表面元素分析结果"

样品 C O Br N S
FRPET-g-BiBB 74.94 23.26 1.80 - -
FRPET-g-PDA-g-PSBMA 71.24 21.91 0.48 3.81 2.57
FRPET-g-PDA-g-
PSBMA-b-PMTAC
73.40 21.80 0.19 4.43 0.19

图5

FRPET、PDA、游离PSBMA和游离PMTAC的TG曲线"

图6

不同反应时间样品的TG曲线"

表2

不同反应时间改性样品的接枝率"

样品名称 反应时间/h 接枝率
0.5 2.02
FRPET-g-PDA-g-PSBMA 1 4.37
1.5 4.60
2 4.71
3 1.69
FRPET-g-PDA-g-PMTAC 6 3.08
12 3.57
24 6.03

图7

改性前后阻燃涤纶织物的MCC曲线"

表3

游离聚合物GPC测试结果"

样品 Mn/(g·mol-1) PDI
PSBMA 14 579 1.38
PMTAC 6 212 1.24
PSBMA-b-PMTAC 69 627 1.89

表4

改性前后吸湿透气测试结果"

样品 透气阻抗/
(kPa·s·m-1)
透湿率/
(g·m-2·d-1)
吸水
情况
吸水率/
%
滴水扩散
时间/s
芯吸高
度/cm
水分蒸发速
率/(g·h-1)
FRPET 0.24 6 220.8 缓慢吸水 68.86 21.8 >10 0.37
FRPET-g-PDA-g-
PSBMA-b-PMMTAC
0.22 5 912.16 瞬时吸水 101.48 3.5 >10 0.32
机织类产品吸湿
快干标准样
≥8 000 ≥100 ≤5 ≥9 ≥0.18

图8

染色后效果图"

图9

抗菌测试结果照片"

[1] 郝聃, 王锐, 王文庆. 硼系阻燃剂在高聚物阻燃中的应用研究进展[J]. 高分子材料科学与工程, 2021, 37(5): 115-123.
HAO Dan, WANG Rui, WANG Wenqing. Progress in the application of boron flame retardants in flame retardancy of polymers[J]. Polymer Materials Science and Engineering, 2021, 37(5): 115-123.
[2] 孙晨颖, 王文庆, 靳高岭, 等. 热塑性聚合物阻燃抗熔滴研究现状[J]. 纺织学报, 2021, 42(6): 171-179.
SUN Chenying, WANG Wenqing, JIN Gaoling, et al. Research advances in thermoplastic polymers for flame retardant and anti-dripping behavior[J]. Journal of Textile Research, 2021, 42(6): 171-179.
[3] 陈沁, 赵涛. 阻燃纤维及纺织品的研究进展[J]. 印染, 2015, 41(5): 49-54.
CHEN Qin, ZHAO Tao. Research development of flame retardant fibers and textiles[J]. China Dyeing & Finishing, 2015, 41(5): 49-54.
[4] HORROCKS A R. Flame retardant challenges for textiles and fibres: new chemistry versus innovatory solutions[J]. Polymer Degradation and Stability, 2011, 96(3): 377-392.
doi: 10.1016/j.polymdegradstab.2010.03.036
[5] 周颖雨, 王文庆, 王锐. 层层自组装法制备阻燃织物的研究进展[J]. 北京服装学院学报(自然科学版), 2019, 39(4): 12.
ZHOU Yingyu, WANG Wenqing, WANG Rui. Research progress of flame-retardant fabrics prepared by layer-by-layer self-assembly[J]. Journal of Beijing Institute of Fashion Technology (Natural Science Edition), 2019, 39(4): 12.
[6] 刘琳琳, 王文庆, 王锐. POSS在聚合物中的阻燃应用研究进展[J]. 北京服装学院学报(自然科学版), 2021, 41(1): 73-82.
LIU Linlin, WANG Wenqing, WANG Rui. Progress of flame retardant application of POSS in polymers[J]. Journal of Beijing Institute of Fashion Techno-logy (Natural Science Edition), 2021, 41(1): 73-82.
[7] 靳昕怡, 朱志国, 王颖, 等. 耐熔滴性阻燃聚酯的制备及性能研究[J]. 化工新型材料, 2019, 47(1): 144-147,151.
JIN Xinyi, ZHU Zhiguo, WANG Ying, et al. Study on preparation and property of flame of retardant PET with dripping resistance[J]. New Chemical Materials, 2019, 47(1):144-147,151.
[8] ZHAO C S, HUANG F L, XIONG W C, et al. A novel halogen-free flame retardant for glass-fiber-reinforced poly(ethylene terephthalate)[J]. Polymer Degradation and Stability, 2008, 93(6): 1188-1193.
doi: 10.1016/j.polymdegradstab.2008.03.010
[9] LI X, CAI T, CHUNG T S. Anti-fouling behavior of hyperbranched polyglycerol-grafted poly(ether sulfone) hollow fiber membranes for osmotic power gener-ation[J]. Environmental Science & Technology, 2014, 48(16): 9898-9907.
doi: 10.1021/es5017262
[10] CHENG G, XUE H, ZHANG Z, et al. A switchable biocompatible polymer surface with self-sterilizing and nonfouling capabilities[J]. Angewandte Chemie, 2008, 120(46): 8963-8966.
doi: 10.1002/ange.200803570
[11] ZHU J, SU Y, ZHAO X, et al. Improved antifouling properties of poly (vinyl chloride) ultrafiltration membranes via surface zwitterionicalization[J]. Industrial & Engineering Chemistry Research, 2014, 53(36): 14046-14055.
doi: 10.1021/ie5022877
[12] NI L, MENG J, LI X, et al. Surface coating on the polyamide TFC RO membrane for chlorine resistance and antifouling performance improvement[J]. Journal of Membrane Science, 2014, 451: 205-215.
doi: 10.1016/j.memsci.2013.09.040
[13] 闫淑敏. 棉纤维的DMC阳离子化改性及其活性染料染色性能研究[D]. 大连: 大连理工大学, 2015:23-50.
YAN Shumin. Preparation of DMC-modified cationic cotton fabrics and its application in salt-free dyeing of reactive dyes[D]. Dalian: Dalian University of Technology, 2015:23-50.
[14] YE G, LEE J, PERREAULT F, et al. Controlled architecture of dual-functional block copolymer brushes on thin-film composite membranes for integrated ″defending″ and ″attacking″ strategies against biofoul-ing[J]. ACS Applied Materials & Interfaces, 2015, 7(41): 23069-23079.
[15] 王亚举. PETG共混改性研究进展[J]. 山东化工, 2021, 50(16): 64-65.
WANG Yaju. Developments of modification of PETG[J]. Shandong Chemical Industry, 2021, 50(16):64-65.
[16] LIU R, SUN Y, GU H, et al. Synthesis and application of acrylate copolymer as high ink-absorption and fast drying coating agent for polyester fabric[J]. Progress in Organic Coatings, 2019. DOI: 10.1016/j.porgcoat.2019.105298.
doi: 10.1016/j.porgcoat.2019.105298
[17] 卢维山. 可生物降解聚丙烯复合纺粘无纺布性能研究[J]. 轻工标准与质量, 2018, 162(6): 51-52,54.
LU Weishan. Study on properties of biodegradable polypropylene composite spunbonded non-woven fabric[J]. Standard & Quality of Light Industry, 2018, 162(6):51-52,54.
[18] 周颖雨, 王锐, 靳高岭, 等. 光诱导表面改性技术在织物阻燃中的应用研究进展[J]. 纺织学报, 2021, 42(3): 181-189,196.
ZHOU Yingyu, WANG Rui, JIN Gaoling, et al. Research progress of applications of photo-induced surface modification technique in flame retardant fabrics[J]. Journal of Textile Research, 2021, 42(3):181-189,196.
doi: 10.1177/004051757204200310
[19] MATYJASZEWSKI K, TSAREVSKY N V. Macromolecular engineering by atom transfer radical polymerization[J]. Journal of The American Chemical Society, 2014, 136(18): 6513-6533.
doi: 10.1021/ja408069v pmid: 24758377
[20] RAN J, WU L, ZHANG Z, et al. Atom transfer radical polymerization (ATRP): a versatile and forceful tool for functional membranes[J]. Progress in Polymer Science, 2014, 39(1): 124-144.
doi: 10.1016/j.progpolymsci.2013.09.001
[21] HUI C M, PIETRASIK J, SCHMITT M, et al. Surface-initiated polymerization as an enabling tool for multifunctional (nano-) engineered hybrid materials[J]. Chemistry of Materials, 2014, 26(1): 745-762.
doi: 10.1021/cm4023634
[22] WANG J S, MATYJASZEWSKI K. Controlled/" living" radical polymerization: halogen atom transfer radical polymerization promoted by a Cu (I)/Cu (II) redox process[J]. Macromolecules, 1995, 28(23): 7901-7910.
doi: 10.1021/ma00127a042
[23] KATO M, KAMIGAITO M, SAWAMOTO M, et al. Polymerization of methyl methacrylate with the carbon tetrachloride/dichlorotris-(triphenylphosphine) ruthenium (II)/methylaluminum bis (2, 6-di-tert-butylphenoxide) initiating system: possibility of living radical polymerization[J]. Macromolecules, 1995, 28(5): 1721-1723.
doi: 10.1021/ma00109a056
[24] YANG Y, WANG J, WU F, et al. Surface-initiated SET-LRP mediated by mussel-inspired polydopamine chemistry for controlled building of novel core-shell magnetic nanoparticles for highly-efficient uranium enrichment[J]. Polymer Chemistry, 2016, 7(13): 2427-2435.
doi: 10.1039/C6PY00109B
[25] WANG W, JULAITI P, YE G, et al. Controlled architecture of glass fiber/poly (glycidyl methacrylate) composites via surface-initiated ICAR ATRP mediated by mussel-inspired polydopamine chemistry[J]. Industrial & Engineering Chemistry Research, 2017, 56(40): 11467-11476.
doi: 10.1021/acs.iecr.7b03065
[26] WANG W, JULAITI P, YE G, et al. Controlled architecture of macrocyclic ligand functionalized polymer brushes from glass fibers using surface-initiated ICAR ATRP technique for adsorptive separation of lithium isotopes[J]. Chemical Engineering Journal, 2018, 336: 669-678.
doi: 10.1016/j.cej.2017.12.045
[27] D'ISCHIA M, NAPOLITANO A, BALL V, et al. Polydopamine and eumelanin: from structure-property relationships to a unified tailoring strategy[J]. Accounts of Chemical Research, 2014, 47(12): 3541-3550.
doi: 10.1021/ar500273y pmid: 25340503
[28] CLODT J I, FILIZ V, RANGOU S, et al. Double stimuli-responsive isoporous membranes via post‐modification of pH‐sensitive self‐assembled diblock copolymer membranes[J]. Advanced Functional Materials, 2013, 23(6): 731-738.
doi: 10.1002/adfm.201202015
[29] WANG A J, LIAO Q C, FENG J J, et al. In situ synthesis of polydopamine-Ag hollow microspheres for hydrogen peroxide sensing[J]. Electrochimica Acta, 2012, 61: 31-35.
doi: 10.1016/j.electacta.2011.11.063
[30] 肖蕊, 苏梦婷, 潘建君, 等. 温敏性水凝胶的合成及棉织物透湿透气整理[J]. 印染, 2016, 42(24): 1-4,11.
XIAO Rui, SU Mengting, PAN Jianjun, et al. Synthesis of thermosensitive hydrogels and the application to breathable finishing of cotton fabric[J]. China Dyeing & Finishing, 2016, 42(24):1-4,11.
[1] 赵伦玉, 隋晓锋, 毛志平, 李卫东, 冯雪凌. 气凝胶材料在纺织品上的应用研究进展[J]. 纺织学报, 2022, 43(12): 181-189.
[2] 李亮, 裴斐斐, 刘淑萍, 田苏杰, 许梦媛, 刘让同, 海军. 聚乳酸纳米纤维基载药敷料的制备与表征[J]. 纺织学报, 2022, 43(11): 1-8.
[3] 曹聪聪, 汤龙世, 刘元军, 赵晓明. 无机抗菌织物的研究进展[J]. 纺织学报, 2022, 43(11): 203-211.
[4] 王玥, 王春红, 徐磊, 刘胜凯, 鹿超, 王利剑, 杨璐, 左祺. 三维导湿结构环保针织面料开发与吸湿速干性能评价[J]. 纺织学报, 2022, 43(10): 58-64.
[5] 陈珺娴, 李伟萍, 付琪轩, 冯新星, 张华. 芳纶/阻燃粘胶/阻燃锦纶混纺织物制备及其性能[J]. 纺织学报, 2022, 43(09): 107-114.
[6] 何崎, 李军令, 靳高岭, 刘津, 柯福佑, 陈烨, 王华平. 高卷曲聚醚酯/聚酯并列复合纤维的制备及其性能[J]. 纺织学报, 2022, 43(09): 70-75.
[7] 熊坦平, 谭飞, 黄成, 阎克路, 邹妮, 王政, 叶敬平, 纪柏林. 氯胺接枝涤纶/锦纶超细纤维针织物的抗菌性能[J]. 纺织学报, 2022, 43(08): 101-106.
[8] 朱燕龙, 谷英姝, 谷潇夏, 董振峰, 汪滨, 张秀芹. 抗菌和防紫外线双效功能聚乳酸/ZnO纤维的制备及其性能[J]. 纺织学报, 2022, 43(08): 40-47.
[9] 李伟平, 杨桂霞, 程志强, 赵春莉. 聚乙烯吡咯烷酮/芦荟复合纳米纤维膜的制备及其性能[J]. 纺织学报, 2022, 43(08): 55-59.
[10] 杨尧, 程伟, 余圆圆, 王强, 王平, 周曼. 抗菌和防细菌黏附整理剂在棉织物改性中的应用[J]. 纺织学报, 2022, 43(07): 104-110.
[11] 南清清, 曾庆红, 袁竟轩, 王晓沁, 郑兆柱, 李刚. 抗菌功能纺织品的研究进展[J]. 纺织学报, 2022, 43(06): 197-205.
[12] 渠赟, 马维, 刘颖, 任学宏. 可光降解聚羟基丁酸酯/聚己内酯基抗菌纤维膜的制备及其性能[J]. 纺织学报, 2022, 43(06): 29-36.
[13] 欧康康, 祁琳雅, 侯怡君, 范天华, 齐琨, 王宝秀, 王华平. 纳米纤维基单向导湿抗菌敷料的制备及其性能[J]. 纺织学报, 2022, 43(06): 49-56.
[14] 成悦, 胡颖捷, 付译鋆, 李大伟, 张伟. 抗菌止血非织造弹性绷带的制备及其性能[J]. 纺织学报, 2022, 43(03): 31-37.
[15] 吴洋, 刘方恬, 曹孟杰, 崔金海, 邓红兵. 生物质纤维医用敷料研究进展[J]. 纺织学报, 2022, 43(03): 8-16.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!